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PREFACE.

THE present work contains all the propositions which
are usually included in treatises on Plane Trigonometry,
together with more than six hundred examples for exer-
cise. The design has been to render the subject intelligible
to beginners, and at the same time to afford the student the
opportunity of obtaining all the information which he will
require on this branch of Mathematics. The work is di-
vided into a large number of chapters, each of which is
in a great measure complete in itself. Thus it will be easy
for teachers to select for pupils such portions as will be
suitable for them in their first reading of the book. Kach
chapter is followed by a set of examples; those which are
entitled Miscellaneous Examples, together with a few in
some of the other sets, may be advantageously reserved by
the student for exercise after he has made some progress
in the subject.

As the text and the examples of the present work have
been tested by considerable experience in teaching, the
hope may be entertained that they will be suitable for
imparting a sound and comprehensive knowledge of Plane
Trigonometry, together with readiness in the application
of this knowledge to the solution of problems. Any sug-
gestions or corrections from students and teachers will be
most thankfully received.

I. TODHUNTER.

Sr. JorN’s CoLLEGE,
Feb. 21, 1859,

In the second edition the work has been revised, and the
hints for the solution of the examples have been conmderably
increased.

December, 1860.
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PLANE TRIGONOMETRY.

I. MEASUREMENT OF ANGLES BY DEGREES
OR GRADES.

1. TaE word Trigonometry is derived from two Greek words,
one signifying a triangle and the other signifying I measure, and
originally denoted the science in which the relations subsisting
between the sides and angles of a triangle were investigated; the
science was called plane trigonometry, or spherical trigonometry,
according as the triangle was formed on a plane surface or on a
spherical surface. Plane Trigonometry has now a wider meaning,
and comprises all algebraical investigations with respect to plane
angles, whether forming a triangle or not.

2. We have first to explain how angles are measured. A
plane rectilineal angle is defined by Euclid as the inclination of two
straight lines to one another which meet together, but are not in
the same straight line. And when a straight line standing on
another makes ‘the adjacent angles equal to one another, each
of the angles is called a right angle. A right angle is divided into
90 equal parts called degrees, a degree is divided into 60 equal
parts called minutes, and & minute into 60 equal parts called
seconds. Thus any angle may be estimated by ascertaining the
number of degrees it contains; if the angle does not contain an
exact number of degrees, we can express it in degrees and a fraction
of a degree; or the fraction of a degree may be converted into
minutes and seconds.

3. Thus, for example, half a right angle contains 45 degrees;
a quarter of a right angle contains 22} degrees, which we may write
TT. : 1



2 MEASUREMENT OF ANGLES BY DEGREES OR GRADES.

in the decimal notation 22-5 degrees, or we may express it as
22 degrees, 30 minutes. Similarly, if a right angle be divided into
16 equal parts, each part contains 5§ degrees, that is, 5 degrees,
37 minutes, 30 seconds.

4. Symbols are used as abbreviations of the words degrees,
minutes, seconds. Thus 5° 37’ 30” is used to denote 5 degrees,
37 minutes, 30 seconds.

6. The method of estimating angles by degrees, minutes, and
seconds, is almost universally adopted in practical calculations.
Another method was proposed in France in connexion with a
uniform system of decimal tables of weights and measures. In
this method a right angle is divided into 100 equal parts called
grades, a grade is divided into 100 equal parts called minutes, and
a minute is divided into 100 equal parts called seconds. On
account of the ocourrence of the number one hundred in forming
the subdivisions of a right angle, this method of estimating angles
is called the centesimal method; and the common method is called
the sexagesimal method on account of the occurrence of the num-
ber sizty in forming the subdivisions of a degree. The eentesimal
method is also called the French method, and the common method
is called the English method.

6. Symbols are used as abbreviations of the words grades,
minutes, and seconds, in the centesimal method. -Thus 5¢ 37 30"
is used to denote 5 grades, 37 minutes, 30 seconds in the
centesimal method. A centesimal minute and second are not the
same a8 a sexagesimal minute and second, and the accents which
are used to denote centesimal minutes and seconds differ from
those which are used to denote sexagesimal minutes and seconds.

7. In the centesimal method any whole number of minutes
and seconds may be expressed immediately as a decimal fraction of

- . 37 ‘ .
a grade. Thus 37 minutes is 100 of a grade, that is 37 of a

grade; and 30 seconds is of a grade, that is ‘003 of a grade.

(100)'




MEASUREMENT OF ANGLES BY DEGREES OR GRADES. 3

Hence 58 37" 30" may be written 5+373; and since a grade is
™
(ﬁl)'o) of a right angle, 5373 may be written as 05373 of a

right angle. Notwithstanding this great advantage of the cen-
tesimal method, the sexagesimal method has been retained in
practical calculations, because the latter had become thoroughly
established by long use in mathematical works, and especially in
mathematical tables, before the former was proposed; and such
works and tables would have been rendered almost useless by the
change in the method of estimating angles,

8. We will now shew how to compare the numbers which '
measure the same angle in the English and French methods.

Let D be the number of degrees contained in any a.ngle, G the
number of grades contained i in the same angle. Then since there
are 90 degrees in a right s.ngle, 90 expresses the ratio of the given
angle to a right angle; and since there are 100 grades in a right

angle, 1(6;0 also expresses the ratio of the g1ven angle to a right
angle.

D @
Hence % = W 3
therefore 1006‘._ G G- 0 G'
. 100 _10

The formula D= G’- il @ gives the following rule; From the

rumber of grades contamed in any angle subtract ome-tenth of that
number, the remainder is the number of degrees contained in the
- angle.

The formula @=D + 1 D gives the following rule; Z'o the num-

berqfdegrmoontamedmany angle add one-ninth of that nwmber
thammuthcnumberofgradamtmmdmtheafngk.

1—2
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9. Again, let m be the number of English minutes contained
in any angle, u the number of French minutes contained in the
same angle. Then since there are 90 x 60 English minutes in a

right angle, 56%'&) expresses the ratio of the given.‘angle to aright

angle; and since there are 100 x 100 French minutes in a right
" . .

angle, 100 <100 also expresses the ratio of the given angle to a

right angle. Hence

m M .
90 x 60 100 x 100°
9x6 27
therefore m_mp':ﬁ)”’
50
and B= g T

Similarly, if s be the number of English seconds contained in
any angle, and ¢ the number of French seconds contained in the
same angle,

8 o
90 x 60 x 60 100 = 100 x 100°
81
therefore 8= 550
250
and o= ﬁ&

10. The angles considered in Geometry are in general less
than two right angles. 'We say in general, because angles greater
than two right angles are not altogether excluded. For we may
refer to the proposition that in equal circles, angles, whether at the
centres or the circumferences, have the same ratio which the cir-
cumferences on which they stand have to one another; here there
is no limit to the magnitude of the circumferences, and conse-
quently no limit to the magnitude of the angles; and in the course
of the demonstration given by Euclid, an angle occurs which may
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be any multiple whatever of a given angle, and so may be as great
as we please.

11. Tt is however usual in works on Trigonometry expressly
to state that there is to be no restriction with respect to the mag-
nitude of the angles considered. Let BAD be any straight line,

(o4

pJ

CAE a straight line at right angles to the former. Suppose a line
AP to revolve round one end 4, starting from the fixed position
4B. When AP coincides in direction with 4C, the angle which
has been described is a right angle; when 4P coincides in direc-
tion with AD, the angle described is two right angles; when 4P
coincides with AE, the angle described is three right angles; when
AP coincides with 4B, the angle described is four right angles,
Then as AP proceeds through a second revolution, the angle de-
seribed will be greater than four right angles. Thus if AP be
situated midway between 4B and AC, the angle between 4B and
‘AP will be half a right angle if 4 P be supposed in its first revolu-
tion; the angle will be four right angles and a half if AP be
supposed in its second revolution; the angle will be eight right
angles and a half if AP be supposed in its third revolution; and
80 on. : .
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12. The straight lines CAZ and BAD form by their intersec-
tion four right angles; these are called quadrants. BAC is called
the first quadrant, CA D the second quadrant, DAE the third quad-
rant, and EAB the fourth gquadrant. Now suppose any angle
formed by the fixed line 4B and the moveable line 4 P; if AP is
situated in the first quadrant, the angle BAP is said to be in the
first quadrant; if AP is situated in the second quadrant, the angle
is said to be in the second quadrant ; and so on,

EXAMPLES,

1. The difference of two angles is 10 grades and their sum is
45 degrees; find each angle.

2. Divide two-thirds of a right angle into two parts, such that
the number of degrees in one part may be to the number of grades
in the other part as 3 to 10.

3. Divide half a right angle into two parts, such that the
number of degrees in one part may be to the number of grades in
the other part as 9 to 5.

4, TFind the measure of 1' 5 in decimals of a degree.

5. Divide an angle which contains n degrees into two parts,
one of which contains as many English minutes as the other does
French.

6. If one-third of a right a.ngle be assumed as the unit of
augular measure, what number will represent 75°¢

7. Determine the number of degrees in the unit of angular
measure when an angle of 66§ grades is represented by 20,

8. The numbers of the sides of two regular polygons are as
2 to 3, and the number of grades in an angle of one equals the
number of degrees in an angle of the other. Find the angles.

9. Shew that an angle expressed in centesimal seconds will
be reduced to sexagesimal by multiplying by the factor -324.

10. Compare the angles which contain the same number of
English seconds as of French minutes.
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II. CIRCULAR MEASURE OF AN ANGLE.

13. We have explained two methods of estimating angles,
namely, that by means of degrees and subdivisions, and that by
means of grades and subdivisions, and we have stated that the for-
mer method is that which is most commonly used in practical cal-
culations. There is, however, another method of estimating angles
which is of great importance in the theory of mathematics, which
we shall now explain. The object of the present chapter is to es-
tablish and apply the following proposition; If with the point of
tntersection of amy two straight lines as cenire a circle be described
with any radius, then the angle contained by the straight lines may
be measured by the ratio of the length of the arc of the circle inter-
cepted between the lines to the length of the radius. We shall re-
quire some preliminary propositions; the proposition in Art. 14 is
sometimes assumed, and the beginner may adopt this course and
return to the point hereafter.

14. The circumferences of circles vary as their radii.

Let R denote the radius and C the circumference of one circle;
let  denote the radius and ¢ the circumference of another circle.
In each circle let a regular polygon of x sides be inscribed, and in
each circle draw two lines from the centre to the extremities of
one of the sides of the inscribed polygon; thus we obtain two
similar triangles. Let P denote the perimeter of the polygon in-
scribed in the first circle, and p the perimeter of the polygon in-
scribed in the second circle. By similar triangles a side of the first
polygon is to a side of the second polygon as the radius of the first
circle is to the radius of the second circle; therefore also

L
por

Now let P=C-X and p=c—2; thus

r(C'—X)=R(c—a:);
therefore 70 — Re=rX — Ra,



8 CIKCULAR MEASURE OF AN ANGLE.

Now we assume that by making n as large as we please, the
perimeter of each polygon can be made to differ as litdle as we
please from the circumference of the corresponding circle; thus X
and  can each be made as small as we please, and therefore
7X — Rz can be made as small as we please. Hence rC'— Rec must
be zero, for if it had any value @ then X — Rx could not be made
less than a, which is inconsistent with the fact that »X— Rz can
be made as small as we please. Thus

0 —Re=
C ¢
therefore =5

15, Thus the ratio of the circumference of a circle to its radius
is constant whatever be the magnitude of the circle; therefore of
course the ratio of the circumference to the diameter is also constant.
The numerical value of the ratio of the circumference of a circle to
its diameter cannot be stated exactly,; but, as we shall shew here-
after, this ratio may be calculated to any degree of approximation

that is required; the value is approximately equal to a7 and still

f] 35 the value correct to eight places of
decimals is 3-14159265... The symbol = is invariably used to denote
the ratio of the circumference of a circle to its diameter ; hence, if r
denote the radius of a circle, its circumference is 2xr, where

== 3:14159....

16. The angle subtended at the centre of @ circle by an arc
which is equal in length to the radius is an invariable angle.

more nearly equal to
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With centre O and any radius O4 describe a circle; let AB
be an aroc of this circle equal in length to the radius. Then, since
angles at the centre of a circle are proportional to the arcs on
which they stand,

“angle 40B _ arc 48 _r 1,
4 right angles  circumference of the circle 2xr 2z’
therefore angle 408 ='én_glz;;$ngl_es .

Thus the angle A0B is a certain fraction of four right angles
which is constant, whatever may be the radius of the circle.

17. Since the angle subtended at the centre of a circle by an

* arc which is equal to the radius is an invariable angle, it may be

taken as the unit of angular measurement, and then any angle will
be estimated by the ratio which it bears to this unit. .

Let A0C be any angle ; with O as centre and any radius 04

/] A

describe a circle ; let 4B be an arc of this circle equal in length
to the radius; let  denote the radius, and / the length of the arc
AC. .

Then, since angles at the centre of a circle are proportional to
the arcs on which they stand,

angle 40C 40 1
angleAOB  AB r’
therefore angle A0C =; x angle AOB;

this result is trne whatever the unit of angular measurement may
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be, the same unit of course being used for the two angles. If we
‘take the angle AOB itself for the unit, then this angle must be
denoted by unity ;

thus angle A0C = ;f .

18. 'We have thus proved that any angle may be estimated by

a fraction which has for its numerator the arc subtended by that
" angle at the centre of any circle, and for its denominator the radius
of that circle. And in this mode of estimating angles the unit,
that is the angle denmoted by 1, is the angle in which the arc
_subtended is equal to the radius. We have shewn that this angle

isi—fl—g}-l;ihs ; hence the number of degrees contained in this
angle is 326:_), that is l’sr—o—. If we use the approximate value of =

given in Art. 15, we shall find that @:57'29577951....; this
therefore is the number of degrees contained in the angle which is
subtended by an arc equal to the radius.

19. Thus there are two methods of forming an idea of the
magnitude of an angle which is estimated by the fraction arc
divided by radius. Suppose, for example, we speak of the angle § ;
we may refer to the unit of angular measurement, which is an
angle containing about 57 degrees, and imagine two-thirds of this
unit to be taken; or without thinking about the unit at all, we
may suppose an angle is taken such that the arc subtending it is

- $wo-thirds of the corresponding radius.

20." The fraction arc divided by radius is called the eircular
measure of an angle. Since, as we have already stated, this method
of measuring angles is very much used in theoretical investigations,
it is sometimes called the theoretical method.

21. If r denote the radius of a circle, the circumference is 2xrr;

hence the circular measure of four right angles is —2;"—, that is 2.
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The circular measure of two right angles is r ; the circular measure

of one right ingle is 7; and the circular measure of right angles
is ’%’, where n may be either integral or fractional.

22. 'We will now shew how to connect the circular measure
of any angle with the measure of the same angle in degrees. Let 2
denote the number of degrees in any given angle, @ the circular °
measure of the same angle. Since there are 180 degrees in two

right angles, 1%)- expresses the ratio of the given angle to two right

angles. And since = is the circular measure of two right a.ngles, 9

. also expresses the ra.txo of the given angle to two right angles.
Hence

z 0,
180 =’
thus ' z{:_lﬂ)_q’
k.3
e
and 6= 180°
23. For example, the circular measure of an a.ngle of 1 degree

107

180,themrcularmeasure of an angle of 10 degrees is —— 1807 the

circular measure of an angle of half a degree hmx%; the cir-

cular measure of an angle of one minute is 180 50 the circular

measure of an angle of one second is m;andso on.

Again ; if the circular measure of an angle is §‘the number of

i
8 180 ihatisd of57 2957795.., ;

if the circular measure of an angle is 10, the ;mmber of degrees

degrees contained in the angle i sz
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contained in the angle is 10.@, that is 10 x 57-2957795....; and

80 on.

" The student is recommended to pay particular attention to
these points; especially he should accustom himself to express
readily in circular mesasure an angle which is given in degrees.

24. Similarly we may connect the circular measure of any
angle with the measure of the same angle'in grades.

Let y denote the number of grades in any given angle, 6 the
circular measure of the same angle ; then the ratio of the given

angle to two right angles is expressed by 53(/)_0 and also by g.

Hence
y _9.
§(—)U_'u"’
. 2000
thus Y= pet
' =
and 0—200.

The number of grades in the angle which is the unit of circular
messuro is 20 , that is, 63:661977...

25. In Art. 17 we proved that
angle AOG:% x angle AOB ;

where nothing is assumed respecting the unit of angular measure-
ment, except that the same unit is to be employed for both angles.
Since 40B is an invariable angle, we see that the magnitude of
any angle 40C varies as the subtending arc directly, and as the
radius inversely. Thus we may eay that
kx arc
» radius ’
when % is some quantity which does not change with 40C, and the
value of which depends upon the unit of angular measurement

angle A0C =
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which we please to employ. Suppose, for example, that we wish
to take the half of a right angle as our unit ; then we require that
40C should be equal to 1 when the arc is the eighth part of the
circumference ; thus

PN i
1 = _8'
r 2
4
therefore k=-.
T
Thus the formula
4 arc
angle 40C = 7 * rodins

gives the correct estimate of the magnitude of an angle when the
unit is half a right angle.

EXAMPLES.

1. If D, @, C be respectively the number of degrees, grades,
and units of circular measure in an angle, shew that

D_6 _130
90 100 = °
2. TFind the number of degrees in the angle subtended at the

centre of a circle whose radius is 10 feet by an arc whose length is
9 inches.

3. Find the circular measure of 1% 1%

4. There are three angles; the circular measure of the first
L3
T(‘)’
is 30 grades, and the sum of the first and second is 36 degrees.
Determine the three angles.

"exceeds that of the second by the sum of the second and third

5. Express five-sixteenths of a right ﬁgle in circular measure,



14 EXAMPLES. CHAPTER II,

L .
in degrees and decimals of a degree, and in grades and decimals
of a grade.

6. The angles of a trianglé are in arithmetical progression,
and the greatest is double the least; express the angles in degrees,
grades, and circular measure.

7. The angles of a triangle are in arithmetical progression,
and the number of degrees in the least is to the circular measure
of the greatest as 60 to «; find the angles,

III. TRIGONOMETRICAL RATIOS.

26. Let BAC‘ be any angle; take any point in either of the
containing sides, and from it draw a line perpendicular to the other

A R B

side; let P be the point in the s;xde AC and PM perpendicular to
AB. 'We shall use the letter 4 to denote the angle BAC. Then

PM perpendicular .
P’ that is hypot;nusd' » i8 called the sine of the angle 4;

AM that is base

.47 ) W’ is called the OOlim of the a.ngle .A;
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PM

_—m"
AM . base
ITI—{', th&t ‘18 7

AP ot g WIPOITEE . alled the secant of the angle 4;

that is W , is called the tangent of the angle 4;

, i8 called the cotangent of the angle 4;

AM’ bass

%,ﬂl&tiﬂ-—h———” rl,ilcalled_thecomaadoftheangle‘{.

If the cosine of 4 be subtracted from unity, the remainder is called
the versed sine of A. If the sine of A be subtracted from unity, the
remainder is called the coversed sine of 4 ; the latter term however
is rarely used in practice.

27. The words sine, cosine, &c. are usually abbreviated in
writing and printing ; thus the above definitions may be expressed
as follows, .

PY
AP’
e 4
AP
seod =Tx
oosA:‘%,‘ S
. AM

ooirA_—Fﬂ,

AP
PM’
versd=1-cos 4,

gin 4 =

cosec 4 =

covers 4=1—sin 4.
28, The sine, cosine, tangent, cotangent, secant, coa.eca/nt, cm:oed
sine, and coversed sine are called trigonometrical ratios or trigo-
nometrical functions; sometimes they have been called gontometrical
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Junctions. A large part of T'rigonometry consists in the investiga-
tion of the properties and relations of these fumctions of an angle.
These functions are, it will be observed, not lengths, but ratios
of one length to another ; that is, they are arithmetical whole
numbers or fractions.

. 29. The defect of any angle from a right angle is called the
complement of that angle ; thus if 4 denote the number of degrees
contained in any angle, 90 — 4 is the number of degrees contained
in the complement of that angle. This affords another method of
defining some of the Trigonometrical ratios ; after defining, as in
Art. 26, the sine, tangent, and secant of an angle we may say

the cosine of an angle is the sine of the complement of that
angle;

the cotangent of an angle is the tangent of the complement of
that angle;

the .cosecant of an angle is the secant of the complement of
that angle.

For in the triangle PAM the angle APM is the complement of
the angle 4; and

hypotenuse AP
sec APM Base =j[—_i;_ A

These results may also be expressed thus :

the sine of an angle is the cosine of the complement of that
angle ;

the tangent of an-angle is the cotangent of the complement
of that angle;

the secant of an angle is the cosecant of the complement of
that angle.
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30. The trigonometrical ratios remain unchanged so long as
the angle remains unchanged.

Let BAC be any angle; in AC take any point P and draw PY
perpendicular to 4B ; also take any other point P and draw P’M’

PM PM
perpendicular to 4B. Then by similar tna.ngles 4P = 4p that
i8, the sine of the angle 4 is the same whether it be formed from

/4
] P 7 B

the triangle APM or from the triangle AP’M’. The same result
holds for the other Trigonometrical ratios. Or we may suppose

a point P” taken in 4B and P'M” drawn perpendicular to AC;

PM P'M”
4 14 ——
then the triangles APM and AP”M” are similar, and AP = AP

We now proceed to establish certain relations which hold
among the Trigonometrical ratios.

3l. 'We have immediately from the definitions

1 1
tan 4 td = = =
‘ X €O 1; therefore tan 4 = o d’ cot 4 vk
. — 1 1 1 .
sechcosA_l thereforesecA—m,cosA-m,'
cosec 4 xsind=1; thereforecosecA:—l—-, = 1 .
n A cosec 4

PM PM AM sin 4
Also W d=TH= AP T AP " s d’

cor A=A AN P
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32. To prove that (sin 4)* + (cos 4)°=1.
In the right-angled triangle APM we have
PM*+ AM*=AP*;

) 2 2
therefore %ﬂ—: 1,
PM\* (AM\*
therefore (:II’T + (ﬁ =1;
that is (sin 4)" + (cos 4)*=1.

33. With respect to the preceding proof it should be re-
marked that it is shewn in Euclid, 1. 47, that the square described -
on the hypotenuse of a right-angled triangle is equal to the sum
of the squares described on the sides; and it is known that the
geometrical square described upén any line is measured by the
arithmetical square of the number which measures the length of
the line. From combining these two results we obtain the arith-
metical equality

PM* + AM* = AP°,

It must be observed that (sin 4)* is often written for shortness
thus, sin®4 ; similarly (sin 4)° is written thus, sin® 4. The same
mode of abbreviation is used for the powers of the other Tri-
gonometrical functions, and so the result obtained in Art. 32 is
usually written thus,
‘ sin’4 +cos’d =1.

34. To prove that
(sec A)' =1 + (tan 4), and (cosec 4)* =1 + (cot 4)".
In the right-angled triangle 4 PM we have .
AP'=PM*+ AM*;

' AP* PM*
therefore m.= A +1,
AP\* (PM\!
therefore (m) = (H) + 1,

that is _(sec 4)*=1+ (tan 4)".
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Again, sinoe AP =PM*+ AM",
() -1+ el
PH, PM]’ - |
that is (cosec 4)* =1 + (cot 4)" !

The results here obtained -are usually written thus,
sec’A=1+tan*4, cosec’ 4=1 + oot'4.
35. By means of the relations established in Arts. 31...34 we
are able to express all the other Trigonometrical Ratios in terms

of any one of them; thus, for example, we will express all the
rest in terms of the sine;

cos 4 =,/(1 ~sin’4); (Art. 32),

sin 4 sin 4
cosd = J(l s’ d) ; (Arts. 31, 32),

eosA _ (1 —sin*4)
sind sin 4

1 1
sood = Ty (Ars 31, 3)

cosen A =11 ; (Art. 31),

. tand=

cot A= ; (Arts. 31, 32),

secd =

versd =1-cos 4 =1~,/(1—sin®4). (Art. 32).
Aggain, we will express all the rest in terms of the tangent ;

g 1 1 1 tand
corec d = (T + cotd) - \/(1 = J+ el
(Arts. 31, 34),
. cos d=—) 1 __ . (Artas 31, 34),

] “secd " J(1 +tan'd)
1
cot A ='-m; (Al‘t. 31),

sec A = /(1 +tan’4);
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cose0A = (1 + tan’4)
tand
1
versd=1-cosd=1 ~ i+ tan'd)’

‘We shall now proceed to determine the values of the Tngono—
metrical Ratios for some specific angles.

_86. To determine the values of the Trigonometrical Ra.twa Jor
an a/ngle of 45°,

Let BAC be an angle of 45°; take any point P in AC and

/G’
P .

A M B

draw PM perpendicular to 4B. Since PAM is half a right
angle A PM is also half a right angle ; therefore PM =AM.

Now PM*+ AM*=AP*,
thus - 2PM* = AP .
thgreforé ‘ (;J; ’.= 1,
therefore i_M= :/l_ -
Thus gin 45° —ig-—ﬁ.,cosﬁ" ‘g '}2,
tan 45° =%= 1; cot 45°= %ﬂ-_. 1;
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sec45°=£—§-=J2; cosec 4 °‘=—...J2

vers45°=1— cos45°—-1— —_

NE

37.  To determine the values of the Trigonometrical Ratios for
an angle of 60° and for an angle of 30°.

Let APB be an equilateral triangle, so that the angle PAB

r

A y.4 B

contains 60 degrees; draw PM perpendicular to 4B, then
A M= MB; therefore AM =} AB=} AP.

AM 1/
AP~ 3

in 60° = 1~ o' 60) = Jl—— J(4 @

Thus " cos 60°=

. 1 *
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vers60°=l—00960’=%.

And  sin 30°= 008 60°= 3 ; oos 30°=sin 60 =L

tan 30° = cot 60° —:ﬁ,oot30°=tan 60°= J3;

sec 30° = cosec 60° -——2—, cosec 30° =sec 60°=2;

73
vers 30°=1—cos 30° =1 — ~/3

38. It may be observed that if an angle be less than 45° the
cosine of the angle is greafer than the sine, and if the angle be
greater than 45° and less than 90° the cosine is less than the sine;
these results follow immediately from the triangle PA'M (see figure
in Art. 26) since the greater side in a triangle is opposite to the
greater angle,

EXAMPLES.

1. The sine of a certain angle is 3 ; find the other trigono-
metrical functions of the angle. '

2. The tangent of a certain angle is ;, find the other tri-

gonometrical functions of the angle.
3. The cosine of & certain angle is J g ; find the other tri-
gonometrical functions of the angle.

4 Sbew that sin®6 tan 0 + cos®6 cot0+2sm000s0
=tan 8 « cot 0.

5. Shew that 2 (sin®6 + cos®d) — 3 (sin*6 + cos* 6) + 1 =0.

'
[
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Obtain solutions of the following equations :

b . sin'0=gcoso. ‘7. sinf+oosf=1. 0 o0
3+ 8. ootf=2oc0s0. ©9. sin'f-2cos0+5=0. L0
10. 3sec'd+8=10sec’d.
1L Given.sin (4 — B) = 7, and cos (4 + B) =3, ind 4 and B.

2

IV. APPLICATION OF ALGEBRAICAL SIGNS.

39. In the preceding chapter we defined the Trigonometrical
Ratios, and established certain relations between them; we con-
fined ourselves to angles not exoceeding a right angle. 'We shall
now extend the definitions so as to render them applicable to an-
gles of any magnitude; the relations which were established: will
then also be found to be true for angles of any magnitude.

40. Let O be a fixed point in a fixed line, and suppose we
have to determine the positions of other points in this line with

M 0 M

respect to 0. The position of any point in the line will be known
if we know the distance of the point from O, and also know on
which side of O the point lies. Now it is found convenient to adopt
the following convention ; distances measured in one direction from
0 along the fixed line will be denoted by positive numbers, and
distances measured in the opposite direction from O will be denoted
by nmegative numbers. Thus, for example, suppose that distances
measured from O towards the right hand are denoted by positive
numbers, and let M be a point the distance of which from O is
denoted by 2 or +2; then if M’ be as far from O as M is and on
the other side of O, the distanee of M’ from O will be denoted by — 2.
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41. We have called this method of determining position by
means of numbers affected with algebraical signs a convention,; we
mean by this word to indicate that it is not absolutely necessary
to adopt this method, but merely convenient. The symbols + and —
are defined in the beginning of elementary works on Algebra as
indicative of the operations of addition and subtraction respectively.
As the student advances in Algebra he finds that the symbols +
and — are also used as indicative of the gualities of quantities; and
that no contradiction or confusion ultimately arises from this double
mode of considering the symbols, but that' Algebra gains thereby
considerably in power. (See Algebra, Chaps. V. and XIV.)

It may be remarked, that we are at liberty to take either of the
two directions from O as that which will be indicated by positive
numbers; but when the selection has been made, we must adhere
to it throughout the investigations on which we may be engaged.

42. Let OB, OC be two lines which meet at right angles; pro-

(44
N P
B 0 M B
o’

duce BO to any point B and CO to any point C". Let P be any
point in the plane containing the two lines. The position of P will
be known if we know the distance of P from each of the lines
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BB and CC’, and also know on which side of each o’f these lines it

_ is situated. Draw PM and PN perpendicular o the lines BB’
and (' respectively. We shall adopt the following conventions; °
the distance ON or PM will be expressed by a positive number
when P is above the line BB, and by a negative number when-P is
below the line BB’ ; the distance OM or PN will be expressed by a
positive number when P is to the gkt of CC', and by a negative
number when P is to the left of CC".

43. A similar convention may conveniently be adopted with
respect to angular magnitude.

Let a line AP start from the position 4B, and by revolving in
one direction round 4 trace out the augle PAB, and let this angle
be denoted by a positive number; then if the line AP start from
the position 4B and by revolving round A in the opposite direction
trace out the angle P’AB, this angle may be denoted by a negative
namber. If, for example, each of the angles BAP and BAP’ is
one-third of a right angle, and we denote the former by the

Pl
positive fraction =, the latter may be denoted by the negative

fraction —-%..
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44. 'We shall now give our extended definitions of the Trigo-
nometrical Ratios,

Let AB, AC be two lines at right angles ; let a line revolve
round the point 4 from 4B towards 4C and come into any position
AP; draw PM perpendicular to 4B or AB produced. Then con-
sider AP always as positive; consider A.M as positive or negative
according as M is on the same side of 4C as B is, or on the opposite
side ; and consider PM as positive or negative according as P is on
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the same side of 4B as C is, or on the opposite side. Let the angle
PAB be denoted by 4, then '

. PM PM AP
sind=7p, tnd=7y, sed=7g,
cosA:g cotA:A” C 4P

4P’ Fi = 4=7
vers A=1-cosd, coversd=1—gind.
. Thus the Trigonometrical Ratios are always whole numbers or
fractions positive or negative,

‘We have therefore Trigonometrical Ratios for any positive
angle whatever may be its magnitude; and we have also Trigono-
metrical Ratios for any negative angle by adopting the convention
that the Trigonometrical Ratios for any negative angle shall be the
same as they would be for what we may call the corresponding posi-
tive angle. 'Thus, for example, in the last figure we may consider

BAP as a negative angle, the magnitude of which is —7; then the

Trigonometrical Ratios will be the same as for the angle formed
by revolving the moveable line 4P in the positive direetion until
it reaches the position which it has in the figure; so that the

Trigonometrical Ratios for the angle —% will be the same as

for the angle 2« — %.

45. It follows immediately from the definitions, that if two
angles differ by 4 right angles or by any multiple of 4 right angles
the Trigonometrical Ratios of the two angles are the same.

46. The following relations which have been already esta-

blished for angles not exceeding a right angle, will now be seen in
like manner to hold universally whatever be the magnitude of an
angle positive or negative.
tandxcotd=1, secd xcosA=1, cosecd xsind =1,
sin 4 " eosd
tan- A =m ’ cot A =m ’
gin’4 + cos’A=1, sec'd =1+tan"4, cosec’d=1+cot’4.

¢
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It must be observed that from such an equation as
gin*4 + cos’d =1,

we can infer only that sin A= & ,/(1—cos’d), or that
cosd= +,/(1 —sin*4); we shall have to determine in any parti-
cular case which sign must be ascribed to the radical.

47. The supplement of an angle is its defect from two right
angles. Thus if 4 denote the number of degrees in any angle,
180 — 4 is the number of degrees in its supplement; if 6 be the
circular measwre of an angle, w— @ is the circular measure of its-
supplement. The verbal definition of the word supplement might
appear to limit the word to the case in which the original angle
is a positive angle less than two right angles; but the word is
used in a wider sense, so that if 4 be any number positive or
negative, the angle denoted in degrees by 180 —4 is called the
supplement of that denoted in degrees by 4. Similarly, whatever
0 pay be, the angle whose circular measure is = — 0, is called the
supplement of that whose circular measure is 6,

48. To compare the ngonometmal Ratios of any angle and
s supplement. .

Let PAB be any angle, produce BA to B and make P’A B=PAB;

B M A M B

take 4P = AP, and draw PM and P’M perpendicular to BB’

The angle PPAB=180°—~PAB =180°— PAB; thus P’AB is
the supplement of PAB. The triangles PAM and P’AM’ are geo-
metnca.lly equal in all respects; now
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PN

sind=20,  ain (80— )22

4P’

and since PM and P’M’ are equal in magnitude and of the same
sign, we have
sin A = sin (180°— 4).

AM AM’
now AM and AM’ are equal in magnitude, but since they are
measured in opposite directions from 4, they are of opposite ngn
thus

cos 4 =— cos (180°— 4).

The other Trigonometrical Ratios of the angle 4 may be com-
pared with those of the supplement either by direct use of the
figure, or by employing the two results already established; thus,
adopting the latter method,

sin (180°—-4) sind

tan(lSO"—A):cos (180°—=4) ~ —cos 4 =-tand,
n— —
cot (180°— A)=::8§g° _j))=_ s‘;zsj =—cot 4, .
. 1 1
580(180 —A): 08(180°—A)= —COSA=—MA’
. , 1 1
cosec (180 —A)=sin(180°—A) = = cosec 4,

vers (180°— 4) = 1 — cos (180°— 4) =1 + cos 4.

Thus the sine and the cosecant of any angle are respectively
the same as the sine and cosecant of the supplement of the a.ngle ;
all the other Trigonometrical Ratios of any angle, except the
versed sine, are numerically equal to the corresponding Ratios
of the supplement of the angle, but are of opposite sign.
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49.- To prove that sin (—4)=—sin 4 and cos (— 4) =cos 4.

/ !
7 A\
\P\
F_‘_/ ?
o

Let PAB be any angle; draw PM perpendicular to BAB,
and produce it to P’ so that /P may be equal in length to M P,
and join A P, Then the angles 7’4 B and PAB which are measaured
in opposite directions from 4B are numerically equal, and if
PAB hp denoted by 4, then 4B will be denoted by —4. And

PM Py
smA"]T’ sin (— A)—AP’ ;
| and P'M is numerically equal to PM, but of opposite sign; thus
| sin (—4) = —sin 4,
Also o8 (- ) = 70 =20 = o8 4.

sin(—4) -sind
{ Moreover, tan(-4)= 243 co:A =~tand;




APPLICATION OF ALGEBRAICAL BIGNS. 31
cos(-4) _ cosd

. oot(—A):m_:-si-H:—ootA;
1 1

soo (~4) = o () ~oosd = 24

cosec (—4) = 1 1 =—cosec 4;

vers (—4) =1 —cos (—4) =1 cos 4 =vers 4.

50. To prove that sin (180°+ A)=—sin 4 and cos (180° + 4)
=-—cos 4.

Let PAB be any angle, produce PA to P so that AP’ may be
equal in length to AP, Draw PM and P’M’ perpendicular to

P/

BAB. Then if PAB be denoted by 4, the angle 7’4 B measured
in the same direction from 4B will be denoted by 180°+ 4.
The triangles PAM and P’AM’ are geometrically equal in all

Lpootss PM Py

and sinA:F » 8in(180°+4)=—=—;
AM AM
oo.A:F’ 008(180°+A)=2—F.

Now PM and P’M’ are numerically equal but of opposite sign;
also AM and AM’ are numerically equal but of opposite sign ; thus

gin (180°+ 4)=—sin 4, cos (180°+4)=—cos 4 ;
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sin (180°+4) —sind
cos (180°+4) ~ —cos 4

" _cos(180°+4) —cos4
oot (180°+ )= < T80+ 4) = “sim 4

similarly sec (180°+ 4)=—sec 4, cosec(180°+4)=— cosec 4.

moreover tan (180°+ 4)= =tan 4,

=cot 4;

It is obviously only a.nother mode of expressing the two funda-
mental results if we write

gin 4 =—sin (4—-180°), cos 4 =—cos (4 —180°.

51. ' The results of Arts. 48; 49, and 50, are true whatever
be the magnitude of the angle 4, and whether 4 be positive or
negative. This the student should carefully notice. First con-
sider Art. 49; whatever the magnitude of A may be, positive or
negative, we shall always have PM P forming a straight line, and

" the points P and P’ equally distant from M and on opposite sides
of it; and the angles PAB and P’AB will be numerically equal
but of opposite sign. Thus we become certain of the universal
truth of Art. 49. Next consider Art. 50; the essential points of
the demonstration are that M and M’ should be equally distant
from 4 and on opposite sides of it, and that P and P’ should be
equally distant from the line B4 B’ and on opposite sides of it; and
the figure assures us that these essential points are always secured.
If PAB be any positive angle, then by adding to it an angle of
180° we obtain the angle formed by 4B and AP. If PAB be
any negative angle, then by adding to it an angle of 180° we
obtain the angle formed by 4P and 4AB. Thus we become certain
of the universal truth of Art. 50. The universal truth of Art. 48
may be made to depend on that of Art. 49 and that of Art. §0.
For we have

sm A =—sgin (4 - 1807, umversally, by Art. 50,
-sin (4- 180") =—sin (180°~ 4), universally, by Art. 49,
therefore sin 4 = sin (180°~ 4) universally.
Again . \oosA =— cos (4 - 180°), qniversally, by Art. 50,



APPLICATION OF ALGEBRAICAL SIGNS. 33

cos (4 — 180%) = cos (180° — 4), universally, by Art. 49,
therefore cos 4 = - cos (180° — 4), universally.
52. To shew that sin (90° + 4) =cos 4,
and cos (90° + 4) = —sin 4.

r
!

B M A M B

Let PAB be any angle ; let AP be at right angles to 4P and
80 situated that a moveable line can pass from the position 4P to
the position 4P’ by revolving round 4 in the positive direction
through a right angle. Then if PAB be denoted by 4 we can
denote PABby90°+ 4. Take AP’ = AP and draw PM and P M’
perpendicular to BAB. Then the angle PAM is geometrically
equal to the angle AP’ M’, and the triangles PAM and P’AM’ are
geometrically equal in all respects. And

. PyM AM
sin (90° + 4) = 17’ cos 4 =—p}
now P”M’ is numerically equal to AM and both are of the same
sign (Art. 42); thus
gin (90° + 4) = cos 4.

Again con (90°+ 4) =40, sina =T
now AM’ and PM are numerically equal but of opposite sign
(Axt. 42); thus c08(90° + 4) = —sin 4,

63. In order to prove that the proposition in the preceding -
article is universally true, we must examine the different cases

T T, 3
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that can occur ; the figure in the preceding article supposes that
4 is a positive angle terminated in the first quadrant. The an-
nexed three figures shew 4P in the second, third, and fourth
quadrants respectively.

In every case it will be seen that the triangles PAM and
P’AM’ are geometrically equal in all respects ; also M’ and A M
are of the same sign, and A M’ and PM are of opposite sign. Thus
the proposition may be seen to be true if 4 be any positive angle.

Pl
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The four figures of this and the preceding article will also shew
the truth of the proposition for any negative angle ; the last figure
for example applies when 4 is between 0 and — 90°, the third figure
vhen 4 is between —90° and — 180°, the second figure when 4 is
between — 180° and — 270°, and the first figure when 4 is between
-270° and — 360°. -

54, If A be the number of degrees in any angle, then the
angle which is expressed in degrees by 90 — 4 is called the com-

plement of the angle 4; sog—0 is the circular measure of the

complement of the angle whose circular measure is 6. The term
complement of an angle has already been introduced (Art. 29), but
the angle contemplated then was a positive angle less than a right
angle, This restriction however will be no longer retained. We
may now shew universally that the sine of an angle is equal to the
cosine of s complement, and the cosine of an angle equal to the
sine of its complement. These propositions may be proved by
examining different cases as in Arts. 52 and 53; or they may be
deduced from results already established. Thus, for example, we
have proved that
gin (90° + 4) = cos 4, universally (Arts. 52, 53),
also sin (90° + 4) = sin (180° — 90° — 4), universally (Art. 51),
therefore sin (90° — 4) = cos 4, universally.
3—2
P

7
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Then if we suppose 90°— A=A’ we have 4 =90°—4’; thus
’ sin A’ = cos (90° — 4'), universally.

55. It will now be found that we are able to express the
Trigonometrical Ratios of any angle whatever in terms of the
Trigonometrical Ratios of some positive angle not exceeding a
right angle. For in the first place by the formule sin (—4)
——_gin A and cos (—4)=cos4, and those which follow from
these (see Art. 49), we can make the Trigonometrical Ratios of
any negative angle depend upon those of the corresponding posi-
tive angle ; and so we need only consider positive angles if we
please. By Art. 45 any multiple of four right angles may be
rejected ; thus, so far as its Trigonometrical Ratios are concerned,
we may replace any angle whatever by an angle less than four
right angles. Then by the formuls sin (180° + 4) =—sin 4, and
cos (180°+A)=—oosA, and those which follow from these (see
Art. 50), we may make the Trigonometrical Ratios of any angle
depend upon those of an angle not exceeding two right anglea.
Lastly, by the formule sin (180°— 4) =sin 4 and cos (180°— 4)
=—cos 4, and those which follow from these (see Art. 48), we may
make the Trigonometrical Ratios of any angle depend upon those
of an angle not exceeding a right angle.

For example,
sin 600° = sin (360°+ 2407) = sin 240° = gin (180° + 60°) = —sin 60°.
Tan (— 1000°) = —tan 1000° = — tan (720° + 280°) =— tan 280°
= —tan (180° + 100°) = — tan 100° = — tan (180° — 80°) = tan 80°.

56. To trace the changes in the sine of an angle as the
angle varies. ;

Let BAB and CAC" be two lines at right angles, and suppose a
line AP of constant longth to revolve round one end 4 from the
fixed position 4B so that P traces out the circle BCBC'. From
any position of P draw PM perpendicular to BAE ; then

. PM
mnPAB: A—P‘.
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A

c‘l’

When AP coincides with 4B the perpendicular PM venishes;
thus when the angle is zero 5o also is its sine. 'While 4P moves
through the first quadrant PM is positive, and continually in-
creases until 4P coincides with 4C, and then PM is equal to 4 P;
thus as the angle increases from 0 to 90° the sine inereases from

"0 to 1. While AP moves through the second quadrant PM is

positive, and continually decreases until 4P coincides with 4B
and then PM vanishes; thus as the angle increases from 90° to
180° the sine diminishes from 1to 0. 'While 4P moves through
the third quadrant PM is negative, and increases numerically
until 4P coincides with 4AC"; thus as the angle increases from
180° to 270° the sine is negative and increases numerically from
0 to—1. 'While AP moves through the fourth quadrant PM is
negative, and decreases numerically until AP coincides with 4B;
thus as the angle increases from 270° to 360° the sine is negative
and decreases numerically from — 1 to 0.
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57.  To trace the changes in the cosine of an angla as the angle
varies. .

‘With the figure of the preceding article we have
AM

At first AP coincides with 4B and then AM = AP; thus when
the angle is zero the cosine is 1. 'While 4P moves through the
first quadrant 4M is positive and continually decreases until 4P
coincides with 4C and then AY vanishes ; thus as the angle in-
creases from 0 to 90° the cosine diminishes from 1 to 0. While 4 P
moves through the second quadrant 4 M is negative and increases
numerically until AP coincides with AB’; thus as the angle increases
from 90° to 180° the cosine is negative and increases numerically
from O to — 1. - While 4P moves through the third quadrant AM
is negative and decreases numerically until AP coincides with 4C”;
thus as the angle increases from 180° to 270° the cosine is negative
and decreases numerically from — 1 to 0. 'While 4P moves through
the fourth quadrant AM is positive and continually increases until
AP coincides with 4 B; thus as the angle increases from 270° to 360°
the cosine is posltlve and increases from 0 to 1.

58. To trace the changes in the tangent of an angle as the
angle varies.

‘With the ﬁgure of Art. 56 we have

PM

an PAB= T
At first AP coincides with 4B and then PM vanishes and
AM =AB; thus when the angle is zero so also is its tangent.
While AP moves through the first quadrant PM and AM ave
positive; PM continually increases and 4M continually decreases
until 4P coincides with AC ; thus as the angle increases from 0 to
90° the tangent increases from 0 without limit, so that by taking
an angle sufficiently near to 90° we can make the tangent as great
a8 we please; this is nsually expressed for the sake of abbreviation
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thus, the tangent of 90° is infinite. While 4P moves through the
second quadrant PM is positive and AM is negative; PM con-
tinually decreases and AM increases numerically until A P coincides
with 45’; thus as the angle increases from 90° to 180° the tangent
is megative and decreases numerically from an indefinitely large .
value to zero. While AP moves through the third quadrant PM
and AM are negative; PM increases numerically and AM de-
creases numerically until 4P coincides with AC” ; thus as the angle
increases from 180° to 270° the tangent is positive and increases
from 0 without limit, so that by taking an angle sufficiently near
to 270 we can make the tangent as gréat as we please ; this as
before is abbreviated into the tangent of 270° is infinite. While
4 P moves through the fourth quadrant PM is negative and 4 M
is positive; PM oontinually decreases numerically and AM in-
creases until 4P coincides with 4B ; thus as the angle increases
from 270° to 360° the tangent is negative and decreases numerically
from an indefinitely large value to zero.

Similarly the changes in the cotangent of an angle may be traced.

59. To trace the changes in the secant of an angle as the angle
varies.

The changes in the secant of an angle may be traced by means of
the figure in the same way as those of the sine, cosine, and tangent;

1 .
e PAB’ and infer the
changes in the secant from the known changes in the cosine; we
will adopt the latter method. As the angle increases from 0 to 90°
the cogine diminishes from 1 to 0 ; thus the secant increases from
1 without limit, so we may say the secant of 90° is infinite  As
the angle increases from 90° to 180° the cosine is negative and in-
creases numerically from 0 to — 1 ; thus the secant is negative and
decreases numerically from an indefinitely large value to —1. As
the angle increases from 180° to 270° the cosine is negafive and
decreases numerically from — 1 to 0 ; thus the secant is negative
and increases numerically from —1 to infinity. - As the angle
increases from 270° to 360° the cosine is positive and continually

~

:

or we may use the formula sec PAB=
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incréases from 0 to 1; thus the secant is positive and continually
diminishes from infinity to 1.
Similarly the changes in the cosecant of an angle may be traced.

60. Since vers 4 =1 —cos 4, as the angle increases from 0 to
180° the versed sine increases.from 0 to 2, and as the angle in-
creages from 180° to 360° the versed sine diminishes from 2 to 0.

61. Thus we see that the sine and cosine may have any value
between ~ 1 and +1; the tangent and cotangent may have any
value between — @ and + o ; the secant and cosecant may have
any value between —c0 and —1 and between +1and + 0. And
it will be found on examination that no Trigonometrical Ratio
changes its sign except when it passes through the value zero ar
the value infinity. The versed sine is always positive and may
have any value between 0 and 2.

62. The followimg table of the values of the Trigonometrical
Ratios of certain angles is formed from the results of the preceding
chapter and the present chapter.

0° | 30°| 45°| 60° | 90° | 120° | 135° | 150° [180°
, SRR NIV TR T ‘
. Ji| 1|1 1 1. J3
cosive |} {5zl 3 |0 5||l-7a| T [T
' 1 ' 1. 1
tangent 0 T3 1 ,\/3* o [=/3 | -1 |- 73 1}
‘ ’ 1 1
cotamgent | @ |3 | 1 |51 0 |~g | -1 |-J3 )@
b 3 2 2 1
secan 1 /3 N2 o | -2 [-J/2 73
‘ 2 2
coseeant | w |- 2 |,/2 NE] 1 73 N2 2 @
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"EXAMPLES.
1. Determine the values of the Trigonometrical ratios for an
angle of 585°.
2. Also for an angle of 690°.
3. Also for an angle of 930°.
4. Also for an angle of 6420°,

5. . Find all the angles between 0 and 900° which satisfy the
relation tan § = 1.

6. Find all the angles between 0 and 900° which satisfy the
relation cos®d = §.

7. Find all the values of versin ?g where n is any integer.
8 Find all the values of sin {“; +(- l)"%} where n is any
integer,
9. Solve &in + cos'd=0.
v 10. BSelve 2gin*d— 5cos6—4=0.

11. Trace the changes in the sign and value of cos§ —sin 6
8 § changes from 0 to 2a.

12. A]s.o of cos*d — sin*4.
13. Also of tan 8 + oot 6.

14, Ts sec’f= (—;-:%? a possible equation
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V. ANGLES WITH GIVEN TRIGONOMETRICAL
: RATIOS.

63. To construct an angle with a given sine or cosine.
) (24

Required an angle the sine of which is a given quantity a.
Describe a circle with unity for its diameter, and take any diameter
AB of this circle; with centre B and radius a describe a circle; let
C be one of the points where this circle meets the former circle ;
join AC and BC. Then ACB is a right angle, and the sine of BAC
20

AB’

If the cosine of the required angle is to be a, then the same
construction may be made, and 4BC will be such an angle as is
required. :

that is @; therefore BAC is such an angle as is required.

64. To construct an angle with a given tangent or cotangent.

Required an angle the tangent of which is a given quantity a.

Take a line AB the length of which is unity; draw BC at
right angles to 4B and equal in length to @, and join C4. Then

50 that is @; therefore BA(C is such an

the tangent of BAC is 34’

angle as is required.
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If the cotangent of the required angle is to be a then the same
construction may be made, and ACB will be such an angle as is
required.

(44

A

65. If an angle is required to have a given cosecant, then

since the cosecant is the reciprocal of the sine, the angle must
have a known sine; therefore the angle may be found by Art. 63.
Similarly if an angle is required to have a given secant, or a given
versed sine, then the cosine of the angle is known and the angle
may be found by Art. 63.
. We shall now proceed to find expressions which include all the
angles which have a given Trigonometrical Ratio. In the re-
mainder of this chapter we shall express all the angles that occur
in circular measure.

66. To find an expression for all the angles which have a
given sine.

Let BAC be the least positive angle which has the glven sine;

4

(44

B’ A B
denote this angle by a. Produce BA to any point B and make
the angle B’AC" = BAC; then BAC' =7 —a.

Now it is obvious from the figure that the only positive angles
which haye the same sine.as a are w — a, and the angles formed by
adding any multiple of four right angles to a or to # —a; that is,
angles included in the formul® 27 + ¢ and 2nmr + = ~ a, where % is

S
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zero or any positive integer. Also the only negative angles which
have the same sine as o are—(x + a), and — (2= — ), and the angles
formed by adding to these any multiple of four right angles taken
negatively; that is angles included in the formul® 2n7 — (r + a),
and 2nm — (27 — a) where # is zero or any negative integer. All
the angles which have been indicated will be found on trial to
be included in the formula
nr+(—1)"a,

where 7 is zero, or any integer positive or negative. Also all the
angles included in this formula will be found among the angles
which have been indicated. Thus the formula nz+(—1)a in-
cludes all the angles which have the same sine as a, and all the
angles which it includes have the same sine as a.

This formula also determines all the angles which have the same
cosecant aswa,

67. To find an expression for all the angles which have a given

cosine. . ) '

Let BAC be the least positive angle which has the given cosine;

denote this angle by a. Make the angle BAC"=BAC. Now it is
: 44

A B
\a’
obvious from the figure, that the only positive angles which have
the same cosine a8 a are 27 —a, and the angles formed by adding
any multiple of four right angles to.a or to 2w —a; that is, angles
included in the formule 2n + a and 2nx + 2 — a, where n is zero
or any positive integer. Also the only negative angles which have
the same cosine as a are — a, and —(2#'— a), and the angles formed by
adding to these any multiple of four right angles taken megatively;
that is, angles included in the formule 2nm~a and 2nx — (27— a)
where n is gero or any negative integer. All the angles which have
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been indicated will be found on trial to be included in the formula
20w q,

where » is zero or any integer positive or negative. Also all the
angles included in this formula will be found among the angles
which have been indicated. Thus the formula 2nar & a includes all
the angles which have the same cosine as a,and all the angles which
it includes have the same cosine as a.

This formula also determines all the angles which have the same
secant or the same versed sine as a.

68. To find an expression for all the angles which have a given
tangend.

Let BAC be the least positive angle which has the given tan-
gent; denote this angle by a. Produce B4 to any point B’ and
C4 to aay point €.

I/ 4

B A B

0’

Now it is obvious from the figure that the only positsive angles
which have the same tangent as a are = + a, and the angles formed
by adding any multiple of four right angles to a or to = +a; that
is, angles included in the formulse 2n7 +a and 2nx + 7 + a, where
nis zero or any positive integer. Also the only negative angles
which have the same tangent a8 a are — (v — a), and — (27 +a), and
the angles formed by adding to these any multiple of four right
angles taken negatively; that is, angles included in the formuls
2nw — (r—a) and 2nw— (27 —a) where n is zero or any negative
integer. AIl the angles which have been indicated will be found
on trial o be included in the ‘ortula

%
'

nr
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where 7 is zero, or any integer positive or negative. Also all the
angles included in this formula will be found among the angles
‘which have been indicated. Thus the formula nr + a includes all
the angles which have the same tangent as o, and all the angles
which it includes have the same tangent as a.

This formula also determines all the angles which have the same
cotangent a8 a. :

69. In Art. 66 we shewed that if a be the least positive angle
which has a given sine, the formula nx + (- 1)"a includes without
excess or defect all the angles which have the same sine as a; it
was convenient for distinctness in the demonstration to suppose a
the least positive angle which has the given sine. But this restric-
tion can be removed, for we can shew that if B8 be any angle, the
formula nr + (- 1)"8 will include without excess or defect all the
angles which have the same sine as 8. For suppose a to be the
least positive angle which has its sine equal to sin8; then, from
what has been proved, we know that 8 must be one of the angles
included in the formula mm + (- 1)"a where m is zero, or any in-
teger positive or negative. Suppose then 8=rx+(—1)a; there-
fore nw+(—1)"B=nw+(—-1)r7+(-1)"""a; and.all we have to
prove is, that this formula includes without excess or defect all the
angles included in the formula mz+(—1)"a. If # be even the
formulze correspond by taking m=n+r; if = be.odd, the formule
correspond by taking m=n—7. The formula nx+(-1)'8 will
of course also include without excess or defect all the angles which

- have the same cosecant as 3.

70. Similarly we may shew that if 8 be any angle, the angles
which have the same cosine or secant or versed sine as 8 will be
included without excess or defect in the formula 2n7+f3; and that
the angles which have the same tangent or cotangent as 8 will be
included without excess or defect in the formula nr+ 8.

71. Before leaving this part of the subject we will recur to the
definitions of the Trigonometrical Functions; we considered them
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as ratios formed by comparing the sides of a right-angled triangle,
but formerly they were differently defined, and it is advisable to
notice the old definitions in order that the student may understand
allusions to them which will occur in his reading.

(44

N

Let 4 be the centre of any circle, 4B a radius, BP any arc; .
draw the radius 4 at right angles to 4B, and draw tangents to
the circle at the points B and C'; produce AP to meet the first
tangent in 7' and the second tangent in ¢; draw PM perpendicular
% 4B. Then the old definitions are as follows, in which the lines
of the figure are considered to be functions of the arc BP. PM is
the sine of the arc BP, AM is its cosine, BT is its tangent, Ct is its
cotangent, 47" is its secant, A¢ is its cosecant, BM is its versed sine;
tlio the line joining B and P is the chord of the arc BP. Thus
the terms sine, cosine, &o., formerly denoted certain lines and not
Certain ratios. On the old system the lengths of the sine, cosine,
&. depended on the radius of the circle considered, so that it
became necessary to state what length was ascribed to this radius

in any investigation,
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- 72. Tt is easy to connect the values of the old and new Tngo-
nometrical Functions; for

sine of the angle PAB-PM

4P’
sine of the arc PB=PM;
thus sine of the arc=radius of circle x sine of the angle,

sine of the arc

and sine Of the cmglo = mlg .

Similar results hold for all the other Trigonometrical Functions.
Thus from any formula in the modern system which involves Func-
tions of Angles, we can deduce the corresponding formula in the
ancient system which will involve Functions of arcs, and vice versa.

For example, if 4 denote any angle, we have (Art. 32)
sin®4 +cos’4d=1.

Now let a denote the arc corresponding to 4 in a circle of radius
r; then, using the old definitions

sin*e cos’a

7 T b
so that sin’a + cos*a =1".
‘We may notice that the sine of half the angle PAB ‘
QPB PB
éAB >

and therefore the chord of an arc =radius of circle x twice the sine
of half the angle.

73. Since the sine of an arc is equal to the radius of the circle
multiplied by the sine of the angle, it follows that if the radius of
the circle be unity the numerical value of the sine is the same in
both systems; and a similar result holds for the other Trigonome-
trical Functions. Thus any formula expressed in the ancient sys-
tem may be immediately converted into a formula expressed in the
modern system by supposing the radius of the circle to be equal to
unity.
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74. The old definitions give some indications of the origin of
the terms sine, costne, &c. The word stne seems derived from the
Latin word sinus & bosom, the arc is supposed to represent a bow,
and thus gets its name, and the string, half of which represents the
sine of half the arc, would come against the breast of the archer.
The words tangent and secant are naturally derived from the old
definitions. (See Penny Cyclopedia; article T'rigonometry.)

75. The modern method has now completely superseded the
ancient method in English works ; it was introduced by Dr Peacock.
(S8ee Peacock’s Algebra, Vol . p. 167). It may however be
observed, that it is stated by Professor De Morgan (7rigonométry
and Double Algebra, p. 18), that “Rheticus, who gave the first
complete trigonometrical table, and invented the secant and cose-
cant to complete it, used the method of ratios.”

EXAMPLES.

Write down the general value of § when tan =1,
Write down the general value of § when sin = 1.
‘Write down the general value of § when cos§ = 1.

1

2

3

4. 'Write down the genéral value of 6 when cosf= —%.
5. Find all the values of § which satisfy sin®6=sin"a
6. Write down the general value of 6 when cosec'f =

7. TFind all the values of 6 which satisfy cos®d=cos"a.
8. 'Write down the general value of § when sec’§ =2,
9. Find all the values of 6 which satisfy tan®6 = tan’a.

3]

*10. Write down the general value of § when tan'd =%,

11. Shew that all the angles which have both the same sine
and the same cosine as a, are included in the formula 2nr + a

12. Write down the general value of 6 which satisfies both

¥/

: 1 /3
un0=—-2 and 0080——7.

T. T ‘ 4
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VI. TRIGONOMETRICAL RATIOS OF TWO
ANGLES.

76. To express the sine and cosine of the sum of two angles tn
terms of the sines and cosines of the angles themselves.

A

o M [7, [44

Let the angle COD be denoted by 4, and the angle DOE by
B; then the angle COE will be denoted by 4+ B. In OF take
any point P, draw PM perpendicular to OC, and PN perpendicular
to OD; draw NR perpendicular to P and NQ perpendicular to
OC.  Then the angle PNR is the complement of RNO, that is of
NOC'; therefore NPR is equal to 4. .

PM RM + PR NQ PR
Nowsm(A+B)-—— ~—O0P  ~OP OP
_NQ ON PR PN
=0n' 0P * PN 0P
=gin 4 cos B + cos 4 sin B.
cos(A+B)-—0—]—'[_0————Q QM—-O—Q—NR
_0Q ON _NE NP
_~ON' QP NP'OP
= cos 4 cos B — sin 4 sin B,



|

TRIGONOMETRICAL RATIOS OF TWO ANGLES. 51

77, To express the sine and cosine of the difference of two
angles in terms of the sines and cosines of the angles themselves.

./ /i g
b
M P .
4
- i
o [/ M

Let the angle COD be denoted by 4, and the angle DOE
B; then the angle COE will be denoted by 4 —B. In OF take
any point P, draw PM perpendicular to OC and PN perpendicular
to OD ; draw NE perpendicular to P produced and NQ perpen-
dicular to OC. Then the angle PVR is the complement]of PNQ,
and is therefore equal to ONQ; therefore NPR is equal to 4.

_Arg ON_RP PN
“ON'OP PN 0P
=gin 4 cos B —cos 4sin B.

“oP~"oP “or*oP

_0Q ox NR PN
~ON 0P "PN'OP

=08 4 cos B + sin 4 sin B.



52 TRIGONOMETRICAL RATIOS. OF TWO ANGLES.

<+ 78, To assist the student in remembering the preceding
demonstrations, we may observe that the point P is taken in the
line that bounds the compound angle we are considering,; thus, in
proving the formulse for .sin (4 +B) and cos (4 + B) the point P
is taken in the line which bounds the angle 4 + B, and in proving
the formule for sin (4 — B) and cos (4 — B) the point P is taken
in the line which bounds the angle 4 — B.  After the construction
is completed, the principal step consists in shewing that the angle
NPR is equal to 4; it will be seen from the construction that
this is the case, for the lines PN, RP are respectively perpendi-
cular to the lines whwh Jorm the angle 4, and thus form an angle
equal to 4.

79. The. formule established in Arts. 76 and 77 are true
whatever may be the size of the angles 4 and B; the student may
exercise himself by going through the construction and demon-
stration in different cases; it will be found that the only variety
which occurs in the construction consists in the circumstance that
the perpendiculars instead of falling upon certain lines may fall upon
those lines produced. We will, as an example, prove the formuls
in Art. 76, when each of the angles 4 and B is less than a right
?.ng]e, and their sum greater than a right angle.

E,

\

i /B v

Let the angle COD be denoted by A4, and the angle DOE by
B; then the angle COE will be denoted by 4 + B. In OF take
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any point P, draw PM perpendicular to CO produced and PN
perpendicular to OD; draw NR perpendicular to PM and NQ
perpendicular to OC. Then the angle PNR is the oomplement of
RNO, that is of NOC; therefore NPR is equal to 4.

_PM _MR+PR_NQ PR
Nowsm(A+.B)————_-o—P 0P * OP
_me ON PR PN
=0N' 0P * PN’ 0P
=sin 4 cos B+ cos 4 sin B,
oM
Also eos(A+B)-0P, .
here we must remember that OM being measured to the left of O
is a negative quantity, and we may put for it 0Q — @¥, that is
0@ - NR; thus
cos(A+B)—0-————Q NR—QQ——NR
_0Q oN XN PN
“ON'OP PN OP
=cos A cos B —sin 4 sin B.

80. The formulwe established in Arts. 76 and 77 may be con-
sidered the fundamental formule of the subject ; it is important
therefore that they should be shewn to be universally true. As
we have intimated in the preceding article, the student might
convince himself of their universal truth by examination of all
the cases that can occur ; but we may arrive at the required result

. more decisively by makmg use of some theorems which have a.lready

been completely established. .
The formul® we have to prove are _
sin (4 + B)=sindcos B+cos Asin B................ (1),
’ cos(4 +B)=cosdcos B—sin Asin B..................(2).
8in(4d—B)=sinAdcos B—cosdsin B.................. (3).

cos(4~B)=cosdcos B+sind sinB...........c......(4).
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Now in Arts. 76 and 79 we have shewn that (1) and (2) hold for
all positive values of 4 and B, which do not exceed a right angle ;
and in Art. 77 we have shewn that (3) and (4) hold for all positive
values of 4 and B which do not exceed a right angle, provided 4 be
greater than B, 'We shall first shew that the restriction of 4 being
greater than B may be removed from (3) and (4). '

By Art. 49, sin (4 — B) =—sin (B - 4),
and cos (4 —B)=cos (B—4);
if then we know that
sin (B — 4)=sin B cos 4 — cos Bsin 4,

and cos (B — A)=cos Bcos A +sin Bsin 4;
we know also that

sin (4 - B)-smAcosB cos 4 sin B,
and cos (4 — B) = cos 4 cos B +sin 4 sin B.

Therefore if (3) and (4) hold for values of 4 and B comprised
between any limits when A4 is greater than B, they hold for values
of 4 and B comprised between the same limits when 4 is less
than B.

Thus we know that the four formul® are all true for any
positive value of each angle between zero and a right angle. We
shall next shew that if all the formule are true for values of 4 and
B comprised between certain limits, these limits may be increased
by a right angle. For by Art. 52,

8in (90° + 4 + B)=cos (4 + B) = cos 4 cos B —sin 4 sin B
=8in (90° + 4) cos B + cos (90° + 4) sin B;
in this way, from the truth of (2) for any limits, we can infer the
trath of (1) with an increase of 90° in the limits of either angle.
Similar considerations apply to all the other formule; a.nd thus
the limits become as large as we please.

Lastly, the truth of the formulse for any negative angles may
be established; suppose 4 and B both negative, let 4 =— 4" and
B=-F; thus
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sin (4 + B) =sin (— 4"~ B) = —sin (4'+ B'), by Art. 49,
; =—(sin 4’cos B/+ cos A’sin B')
=sin (- 4’) cos (- B) + cos (— 4) sin (- B)
=8in 4 cos B + cos 4 sin B,
Similarly all the other formul® may be shewn to be true when both
the angles are negative, or when one of the angles is negative.

81. From the four fundamental formul® a large number of

. other formule may be deduced; we shall give some examples of

such deductions.

82. In the expresmons for sin (4 + B) and oos(A + B) put
B=A4; thus

mn2A=2sinAcos1'
co8 24 =cos’4 —sin"4 =1 ~ 2 sin A =2cos'4-1.

Thus o 1+cos 24 =2 cos’ 4,
. 1—cos 24 =2 sin’4,

1-00824 _ ., .,
and THoos2d ™ tan® 4,

83. From the four fundamental formule we have
sin (4 + B) + sin (4 — B) = 2 sin 4 cos B,
sin (4 + B) —sin (4 — B) =2 cos 4 sin B,
cos(A+B)+=<‘:os(A-B)=2cbsAcos'B,
co3 (4 — B) - cos (4 + B) = 2sin 4 sin B,
Let A+ B=C and A—-B=D; therefore
4 =4(C+D) and B=4(C-D); thus
. C’+Dcosc_'—_1_)
2 2’
sin C —sin D= 20080—;23' 020,
co8C +cos D= 20080;DcosO; s .
C+D . C-D

sin

2 2

cos D — cos C'=2sin
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84. 8in (4 +B)sin(4 - B)

=(sin 4 cos B + cos 4 5in B) (sin 4 cos B — cos 4 sin B)
=gin®4 cos’B — cos’' 4 sin* B
= sin® 4 (1 —sin’ B) — (1 —sin"4) sin*B
=sin*4 —sin®B. -

And  cos(4+B)cos(4 —B)
= (cos 4 cos B —sin 4 sin B) (oosAcosB+smA smB)
=cos’4 cos’ B —sin’ 4 sin* B
=cos’4 (1 —sin® B) — (1 —cos’4) sin’* B
=00s" 4 — sin"B = cos’ B —sin’4. '

sin(d+B) smAcosB-)-cosAsmB
cos(4 + B) “cosdcos B—sin Adsin B’

divide both numerator and denomma.tor of the last expression by

85. Tan(4+B)=

sin 4 smB
cosd cosB.

cos 4 cos B; ‘thus we get —sTn-m .

" cosd cosB

tan 4 +tan B |

1—tan 4 tan B*
Suppose B=4; thus we obtain

2 tan 4

1-tan"4’
sin (4—B) sin 4 cos B—cos 4 sin B
cos(A—B) ~ cos A cos B +sin Asin B
sind sinB

.cosd cosB tand —tanB
sind sin B 1+tandtan B’
cosd cos B

therefore tan (4 + B) =

tan 24 =

Tan (4 - B)=

1+

Suppose for example that B =45°, so that tan B=1; then ‘we
shall oMtain

1+tan 4 tand -1
tan (4 +48) =143 -4 =grayT
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. -cos (4 + B) cos 4 cos B —sin 4 sin B
86. Cot(d+B)= i a+ B) " sndcos B+ oo dsin B

cos 4 cos B
_sind gin B __cotA cot B—-1
- eosA_'_cosF"' cot A +cotB *
gin 4 sinB
Suppose B=4 ; thus we obtain
cot*4 -1
0ot 24 = T otd
C s . cotdcot B+1
Slml]a.rly cot (A. - B) = m .
87. Sin21=2sinAooaA=_——8;§‘jiZ:,‘i(Am.szandw);
divide both numerator and denominator of the last expression by
2sin 4
cos 4
cos’4 ; thus we get —T
‘ 1 450
cos® 4
. 2tan 4
therefore 8in 24 “{+tan’d’

Also 008 3= cos® A —pintd = 054 —8in'd
- - cos’d +sin’4
gin® 4 ' '
Teos'A 1-—tan®4d
sin 4 1+tan'4d’
cos® A

(Arts. 82 and 32)

1

1+

88.

sind:-l-Bm'A-—B
gin 4 +sin B 2 -2
ind+sin B _ 7 (Art. 83)
sin 4 —sin B 2oosA+ tsin‘.:1 2 .
2 2
th;B
=T A-R

tan —
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2cosA+BcosA—B
, © cosd+cosB _ 2 2 Art, 83
cosB—cosA—2 . A+B _ A-B ( )
sin sin
. 2 2
. A+ B A-B

= cotT cot——z——

sind sinB sindcosB+cos Asin B
89. TanA+’ta.nB—‘mA cos B~ cos A cos B B

:_sin(A+B)

“cosdcos B’

. . _sin (4 - B)
Similarly tanA—tanB—‘W. _

} sind cosd sin®4+cos’d
?0' Tan 4 +eotd = o + 54 = “sindoosd
_ 1 _ 2 2
“sindcosd  2sindcosd  sin24 °

sind cosd sin*4d —cos’d
tanA—th=gosA_si.nA = sindcosd
cos 24 2cos24
=—sinA‘cosA=‘— sin 24 =—2cot2::4.

91. Sin 34 =sin (24 +4)=sin24 cos 4 +cos 24sin 4
=2 sin 4 cos’ 4 + (1 — 2 sin’4) sin 4
=2sin 4 (1 —sin*4) + (1 - 2sin"4)sin 4
=3sind—4sin’d,

cos 34 =cos (24 + A)=cos 24 cos A —sin 24 sin 4

=(2cos'4 —1)cos 4 — 2 cos Asin’4
=(2cos’A—1)cos 4 — 2cos 4 (1 —cos*4)
=4 cos'A——3opsA.

sin 34  3sin 4—4sin’4
Hence tandd = = A S oo d"
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Divide both numerator and denominator by cos’4 ; thus

Stand _ttans
tan 84 = —mm >
4._coe‘A )
_3tan 4 (1 +tan’4)—4 tan’4 _3tand—-tan’4
- 4-3(1 +tan"4) (Art 34) =5 amid
92. 7o find the values.of the Trigonomestrical Ratios for an
angle of 15° and an angle of 75"
sin 15° = sin (45° - 30")-8111 45° cos 30° — cos 45° sin 30° = “? N ;
0 0 0 0 ~0 0 N/3+1
cos 15° = cos (45° — 30°) = cos 45° cos 30° + sin 45°sin 30° = 572
o 8015 /3-1 (y3-1) .
ek S T Ly s Sl Bk A
o 0815 /341 (J3+1y )
b i = Tty T Gl AL
1 2,/2 1 2J2
0 __ = IN“ . _ =
%o 15°= C 5= B3+ D %' m T 3o
: 0 lJ3+1 0 _ 0 ‘J3 .
And sin 75°=cos 15° = 2J2 ; cos 75° =s8in15°= JZ ;

tan 75%= cot 15°=2+,J3 " cot 75°=tan 15°=2—,/3;

0__ 0 __ "N/2 0 ( 2\/2
sec 75°=cosec15°= J3- i cosec 75° =sec 15° = = /341"

93. Ifsin A =sin B and cos 4 = cos B, then either A and B
are equal, or they differ by some multiple of four right angles.

For 008 (4 — B) =cos 4 co8 B +sin 4 sin B ;
1 =cos’d +sin*d =1;
! therefore 4 — B=0, or a multiple of four right angles taken posi-
' tively or negatively. (Art. 67.)
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94. If cosd =cos B and sin 4 =—sin B, then A +B is zero,
or a multiple of four right angles positive or negative,
For the given relations may be written
cos 4 =cos (—B), sind=sin(—-B). (Art. 49.)
Hence by the preceding article 4 — (— B), that is 4 + B, is zero or
some multiple of four right angles taken positively or negatively.

EXAMPLES.

Prove the following identities : ’ )

cos 4 +8in 4

Vv 1. s A —sn A_tan2i+sec2A

s 2. 2sin*A4sin® B+ 2cos’4 cos® B=1+cos 24 cos 2B.
v \3. tan(45°+ 4)—tan (45°— 4) =2 tan 24.

4. 8in34 cosecd—cos34secd =2.

6, 3sind—sin34=2sin4 (1 —cos 24).

6 sin 4+2sin 34 +sin54  gin 84
* 8in34 +2sin54 +sin74  gin 54°
sinB_sin (24 + B)

1. ind- snd —2cos (4 + B).
8. sin4d—=4sind cos®d —4cosAdsin®4.
. cos A—cos 34
9. sn3d—smd A_.ta n 24,

cos 24 — cos 44
10 S A—emad - wn 34

11. cosec 24 +cot 44 = cot 4 — cosec 44. i
12, cos' (4 — B)+cos’ B— 2 cos (4 - B)cosAcos.B -sin® 4.
13. sin’(4 - —B)+sin’ B+ 2sin (4 - B)smBoosA sin® 4.

1 — tan® (45°— 4)
N4, m 81112A.
4dtand(1- mnA)_mM

B —Trtaray
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16. sinA (1 + tan 4) +cos 4 (1 + cot 4) = sec 4 + cosec 4.

8in 34 +cos 34 _ l+2s1n2A
. a3d—cos 34 = T—2wmin2a 0 (4459
18. oos4+eos(1zo°_A)+cos(120°+4)=o.
19. 4 sin 4 sin (60°— 4) sin (60° + 4) = sin 84.
20. 4 cos.4 cos (120°—'4) cos (120°+ A) = cos 34.
21.  sin 34 8in"4 + cos 34 cos’4 = cos® 24.
22’ ,Asm3A_ ,Acos3A_sm4A
- 3 4 °
23. cosnd cos{n+2) 4 ~cos’(n+1)4 +8in"4 =0.

sin A &sinnd +sin(2rn—-1) 4
24. OO.SA*cosnA,+Q08(2n‘—1)A=hn”A'
25. sinnd cosec’d sec 4 — cosnd sec®d cosec 4

=4 sin (n — 1) 4 cosec” 24.
26. 08104+ cos 84 + 3 cos4d + 3 cos 24 = 8 cos 4 cos® 34,
27. cotA+cot24 +cot4A
= cosec 44 (2 + 2 cos 24 + 3 cos 44).
- 28in 24 +2cos 24

2. °°“°°A=oou_sin4-oosa.4+sinu'.
29.  cos*34 = (cosA — sin34)" + 2 cos 4 sin 34 (cos 4 — sin 4)".
30. cos’d —sin’4 = cos 24 (1 — § sin®24).
Solve the following equations:
. ) w - T g
31. m(z—0)+mt(z— )=4. -

sin 40 + sin §=0, 33, sin 70 —sin @ =sin 36,

ing+oond=—5. 35 sin50=16sin's
36. cos30+cos20+cosf=0. .37' ain30+sin20+sin0=0.
38. tanf+tan (4+o) 39. tan 208 cos*d —cot f.
40. - ( +o) 3tan<z— )
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95. In Art. 82 change 4 into é ; thus we obtain

| 4
=1—9gin*2 = s 4 1.
cosd=1-2sin 3 2 cos 3 1;
4 1—cosd A 1+cosd.
therefoream§= \/ —g C8G = —g

96. Since we ma.y suppose either the positive or negative sign
to be placed before the radical quantities in the preceding article,
we see that corresponding to one value of cos 4 there are #wo values
of sm% and two values of cos %— ; and the reason of thxs may
be assigned. For if « be an angle which has a given cosine, then
the formula 2n7 < a includes all the angles which have this given

cosine ; therefore any expression which gives the value of sing
in terms of cos a may be expected to give the value of the sine of
every angle included in the formula § (2nw £a). Now

a . a
o = 08 N7 81N -2-

sin mr-l-%) =sinmrcos:a

= cosmwsin o = sin & ;
= 7 D 5 = o 8i0 55
thus two values oceur which differ only in sign. Similarly, any

expression which gives the value of cos a—‘ in terms of cosa may be -

‘expected to give the value of the cosine of every angle included in
the formula 4 (2nr&a). Now

a . . a
CO8 | 7T == — } = 008 W CO8 = = SIn N 81n
(. 2) 2 3
a,

2’

a
~cosn1rcos§_.ucog

thus two values occur which differ only in sign.
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97. If cosd only be given and nothing more be known
respecting 4, then the ambiguity of sign which occurs in Art. 95

cannot be removed. If however A itself be given, then -‘4—2 is &

known angle, and therefore we know whether sin ‘—;— is positive or

negative ; and also whether cos ‘21 is positive or negative; thus we
know which sign is to be taken with each radical quantity. Or if

we merely know in which quadrant the angle % lies, we can

| determine the proper signs; for example, if g is an angle between

180° and 270° both its sine and cosine must be negative quantities.

: . 44
98. ByArt.82 81!14:28111-2—0“‘2',
A A
also 1=sm'-2—+'cos E, .
. 2
thus (sin:2‘1+eos§>=1+ain4,
A AN
and (emﬁ-—eos-2-)=l—sm4,
A4 .
therefore mn-2-+oos§=,,/(l+smA) ............ e 1),
. snd sind — o085 = /(L -8 d).rrreerrenr (D)5
therefore Zsin G = /(1 +sin 4) + (1 -sin 4),
and 2cos 3 = /(1 +5in 4) — /(1 —sin 4).

99. Since we may suppose either the positive or negative sign

" to be placed before each of the radical quantities in equations (1)

and (2) of the preceding article, we see that corresponding to one

" value- of sin 4 there are four values for eos% and four values for
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gin % , and th.e reason of this may be éssigned. For if a be an angle

which has a given sine, then the formula nz + (- 1) includes all
the angles which have this given sine; therefore any expression

which gives ‘the value of sm% in terms of sina may be expected
to give the value of the sine of every angle included in the
formula §{nm+ (—1)"}. First suppose » even and equal to 2m; .
then o

sin%{m+(—vl)'a}=sin(m1r+§)=sinm1rcos§+oo.sm1rsin§

. . a
= COS M 8In 7 <= 8ln —

2 2°
Next suppose # odd and equal to 2m +1; then

2 2 2
=cosmmain T =wgin T S=kcosy.
= 2 2y
Thus four values occur for the sine of half an angle when the sine

of the angle is given.

sin 3 {nr+(-1)a}= am(mw+———->-—sm1mrcos——— +cosmasin T~

Similarly any expression which gives the value of cos% in

terms of sin a, may be expected to give the value of the cosine of
every angle included in the formula } {nm+(-1)"a}. First sup-
pose » even and equal to 2m; then

o= ©Y - oos mar oo ® — sin marsin &
cos § {nr +(—1)"a}= oos(fmr + 2) = €08 1w CO8 5 — Sin M 8in 5

CO8 M cOSa -hcosa
= T —-= —_.
: 2 2

Next suppose » odd and equal to 2m +1; then .
cos } {nw+(—1)"a}=cos (m-:r +’f;—a) =cosm-;rcos£§—a—sinmarsin %?
- a :

L T—a T—a .
" =08 M 008 —5— = sk €08 —5— =tk 8in .
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Thus four values occur for the cosine of half an angle when the
sine of the angle is given.

100. If sin4 only be given and nothing more be known
respecting 4, then the ambiguities of sign which occur in Art. 98 .
cannot be removed. If however A itself be given, or if we merely
know in which quadrant the angle 4 lies, we can determine the
proper signs; for in any particular case we may proceed as follows.

We have

sin‘—;-+éos%=-h~/(1 T ) W ),
find —con = J(1-gin ) ..., ()

4

Now suppose, for example, that 4 lies between 0 and 90°, then 5

lies between 0 and 45°; therefore cos% and sin % are both positive

and cos% is greater than sin 14-; hence the left-hand member of (1)
is & positive quantity, and we must therefore take the positive sign
in (1), and the left-hand member of (2) is a negative quantity, and
we must therefore take the negative sign in (2). Therefore if A
lies between 0 and 90°, we have

siné+cos:i=+,/(l +sin 4),

2 2
.4 4 .
81n§—cos;j=—J(l—51nA),

therefore 2sin % =+,/(1 +sin 4) -, /(1 — sin 4),
2 cos% =+ (1 +sin 4) +,/(1 —sin 4).

For another example, suppose that 4 lies between 270° and 360°,

then % lies between 135° and 180°; therefore cos% is negative, -

and sini; is positive, and cos % is numerically greater than sin “4-;;

T.T, 5
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hence the left-hand member of (1) is a megative quantity, and we
raust therefore take the negative sign in (1), and the left-hand
member of (2) is a positive quantity, and we must therefore take the
positive sign in (2). Therefore if 4 lies between 270°and 360°, we
have - .

. A 4 .
sm-§+cos—2-=-~/(l +sin 4),

smg—cosA—+~/(l—smA),

therefore  2sin’s =— /(L +8in 4)-+ /(1 - sin 4),
'2c6s‘%=-,‘/(l +sin 4)— /(1 - sin 4).

101, Tt is eagy to give géneral formule for determining the

signs of sin‘%+cos% and sinf—;-—cosf;—. For

ainj—;+008£=~/2(~/2 ‘; j2 A) ~/2sm<‘; 4)

) is positive if — 4 + 7 lies between 2nr and (2n+ 1),

w sin (A
no J 1

%1
and negative if % + 17; lies between (22 + 1)7 and (2n+ 2)w, where

gtesy

. oo wad .
is positive if 3 lies between 27 — g and 2nw +3%r, and negative if

.m i8 zero or any integer positive or negative. Thus sin

4 .
3 lies between 2nw + 3{' and 2nw + 7%' . Similarly

. A 4 . (4
sm~2—ws-2-=J2m (5—1)

and hence we can infer that sin‘g4 - éos‘—; is positive if g lies between

5
Inw +§ and 2nw + —41' , and negative if % lies between 2nw + i:
97

and 2nr + T
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2 tan '—;—
102. By Art. 85, tan 4 = A;
1 - tan’—2-

put ¢ for tan 4; thus ctan’%+2tan%—-c=0;

therefore ts,nig = -1—*"/0—(1-’_—6') .

\

103. The reason why two values occur in finding the tangent
of half an angle when the tangent of the angle is given, may be
assigned as before. For if o be an angle which has a given tangent,

. then the formula nr+ a includes all the angles which have this
| given tangent; therefore any expression which gives the value of

tan -;: in terms of tan « may be expected to give the value of the

|
tangent of every angle included in the formula } (7 +a). First
suppose 7 even and equal to 2m ; then

tan 4 (nwr + o) =tan <m1r+ %):ta.ng.
Next suppose 7 odd and equal to 2m + 1, then

T +a T+a T a a
tani(mr+a)—_tan<m-u-+ ——2—)—tan—2——tan (§ +§)=-—cot§.

Thus two values occur for the tangent of half an angle when the
tangent of the angle is given.

104., If tan A4 only be given and nothing more be known
respecting 4, then the ambiguity of sign which occurs in Art. 102
cannot be removed. If however 4 itself be given, or if we merely

know in which quadrant % lies, we know whether ta.n% is positive
or negative, and thus we know which sign we must take.

| 105. By Art. 91, cosA=.4cos'§—3 cos%.

Thus if cos 4 be given we have a cubic equation for determining:
5—2 B

s
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cos 53 ; and the reason for thisb may be assigned as before. For if a

be an angle which has a given cosine, then the formula 27w+ a
includes all the angles which have this given cosine; therefore any

expression which gives the value of cosg in terms of cosa may be

expected to give the value of the cosine of every angle included in
the formula §(2nr=0). Now = is of one of the forms 3m, 3 + 1,
3m—1. First suppose n=3m; then

cos } (2nr & a) = cos (2m1r-e%) =cos%.

Next suppose n=3m + 1; then

cos § (2nmr & a) = cos (2m1r + 2"; %)= cos 2”;‘1
Last suppose n=3m ~1; then
cos § (2nr = a) =cos<2m1r - 2”; %Y= cos 2’; ¢
Thus three values occur, namely cos% s COS 213'& , €08 2“.3- 2.

~

106. ByAr. 91, sind=3sin%-dain'd.

Thus if sin 4 be given, we have a cubic equation for determining

sin% ; and the reason for this may be assigned as before.

.

EXAMPLES. .

1. Shew that 2sin 5 = - /(1 +sin 4) - /(1 - sin 4), when 4
lies between 450° and 630°.

2. Obtain cos % in terms of sin 4 when 5 lies between 4057
and 495°
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3. Obtain sing— in terms of sin 4 when i; lies between ~ 45°
and —135° '

4. Determine the limits between which 4 must lie in order
that

2sin A =— /(1 +sin 24) + /(1 - sin 24),
and 008 4 =— /(1 +sin 24) - /(1 — sin 24).

5. Determine the limits between which 4 must lie in order
that

2 cos A =—,/(1 +sin 24) +,/(1 — sin 24).

6. Determine the limits between which 4 must lie in order
that

2sin 4=,/(1 +sin 24)— /(1 ~sin 24).
7. Divide a given angle into two parts whose sines shall be
in a given ratio,
8. Divide a given angle into two parts whose cosines shall be
in a given ratio.
9. Divide a given angle into two parts whose tangents shall
be in a given ratio.

10. Given tan 5 =2/, find sin 4.

11. Given sin 210~=..-;-, find cos 105"

12, Given tan 2A=_§7‘_‘, find sin 4 and cos A.

13. Find tan 165° from the known value of tan 330°.

A 2sind —sin 24
*
14. Shew that tan’ 3 = SsnArsn24"

15. vers (180° — 4) =2 vers % (180° + 4) vers% (180° - 4).

1
16. (cosA+coaB)’+(sinA+sinB)’=4cos'§(A—B).



70 . EXAMPLES. CHAPTER VII.
7. (cos 4008 BY'+ (sin 4 ~sin B)'= 4 sin" 1 (4 - B).
i 2-
18. Shew that sin 22}° =M , €08 22}° = 'J(L;Jﬁ) ,
and tan 224°=,/2-1.

19. (tanA+cotA)2ta.nA<1 tan® ) (1+tan ),.

ofm A\ secA+tand
20. tan<1+ )_s———%A_mA.

21. sin —-——)+cos === sin 0
’ 51< 473) J(vers6)®

29, ,,/(l+sin0)=l+2sinz\/<l—sing>.

23. cos‘s+ 37 5"+ ZE §
o 8 COS ~—8—+COS? 008 3 -2.
J2-1

24. tan 7%0 = ;-/2+—~/3‘.
25. tan1424°=2+,/2-./3—,/6.

26. Iftanz=(2+,/3) ta.n , find the value of tan .

27. If a=('n+ }*%) m, find ta:lna+00ta.

cosacos 13a

28. If d—-ﬁ ) find the value o fm.

29. If sec (¢ + a) + sec (¢ —a) =2 sec ¢, shew that

cos¢=,/2cos§.
30. Iftang = (}-H) tand’, shew that

_~cos¢o c
008 0= T—ccosg’

Cmed
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VIII. MISCELLANEOUS PROPOSITIONS.

107. To find the sine and cosine of an angle of 18°.

Let A denote an angle which contains 18° then 24 contains
36° and 34 contains 54°; hence sin 24 = cos 34,

therefore 28ind cosA=4cos’A —3cos 4;
divide by cos 4, thus 2sin 4 =4 cos'4 —3 =1 — 4sin’4,
therefore 4sin*4+2%8nd -1=0;
by solving this quadratic equation we obtain

sin 4 =— ! : ol .

Since the sine of an angle of 18° is a positive quantity we must
take the upper sign, therefore

sinlS":@,

and cos 187 /(1 —sin* 187 =/ 124 24/9).
108. To find the sine and cosine of an angle of 36°.
2
008 36°=1— 25in’ 18°=1— 2 (ﬁf—l) L ‘;“/5.

sin 36° = /(1 — oos? 369 = Y102V

109. Hence the values of the Trxgonometnea.l Ratios for
angles of 54° and 72° are known ; for

sin 54° = cos 36° cos 54°=sin 36°, sin 72°= cos 18°, cus 72° =sin 18°.

110. The reason why more than one result was obtained in
Art. 107, is that the equation sin 24 =cos 34 is true for some
other angles besides the angle which contains 18°. This equation
may be written ]

008 (90° — 24) = cos 34,
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Hence we conclude that 90°—24 must either be equal to 34
or to one of the angles which have the same cosine as 34 ; thus
every admissible value of 4 will be found from the equation

90°~24 =n. 360°=34;
where n is zero or any integer positive or negative;
90°—n. 360°
thus A= ’T3——— .

For example, if » =0 and we take the lower sign in the de-
nominator, we obtain 4=— 90°; this value of 4 makes cos 4 =0,
and thus we see a reason for the appearance of the factor cos A
which was removed by division in Art. 107. Again, if we put
n=1 and take the upper sign in the denominator, we obtain

0
=—%—750—=—54°; and sin (— 54°) = —sin 54°= —cos 36”:—1;4"/&;
and thus we see a reason for the appearance of the other root in the
quadratic equation of Art. 107, besides the root which we used.

111.  To find the sine and cosine of an angle of 9° and of an
angle of 81°.
By Art. 100,

sin §°+ cos 9°= (1 +5in 18 = /2D,

sin 9°— 08 9°=— /(1 —siia 18°)=_~/£;_~@;

therefore 8in9°= N3+ J5)z (6 —\/5) ’
cos 90 = NG+ N5) + /(5 /5)
. ) .
And sin81°=cos9’,  cos 81°=sin 9°.

We have now found expressions for the sines and cosines
of the following angles, 9°, 15°, 18°, 30°, 36°, 45°, 54°, 60°, 72", 75°,
81°. (See Arts. 36, 37, 92, 107, 108, 111.)

Since 3°=18°-15° we can obtain the asine and cosine of $°
from those of 18° and 15° by Art. 77; and then by means of Art.
76 combined with results already obtained, we can easily find the
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sines and cosines of any angle eomprised in the series 3°, 6° 9°,
12°) &e.

112. In Arts. 87 and 91 we have givel; expressions for sin 24,

cos 24, sin 34, and cos 34 in terms of sin 4 and cos4; we may
also express the sines and cosines of 44, 54, &c. in a similar way.

For sin (n+1)4 +sin(n—1)4 =2sinnd cos 4;

therefore sin (n+1)4 =2sinnd cos 4 —sin(n—1)4;
let n=3; thus sin44=28in34cos 4 —sin 24;
let n=4; thus sin 54 =2sin44 cos 4 —sin 34 ;

and 8o on; thus we can find in succession sin 44, sin 54, &c., in
terms of the sine and cosine of 4.

Similarly, the formula
cos(n+1)4d+cos(n—1)4d=2cosndcos 4,
may be used to find in succession cos 44, cos 54, &c.
This subject will be considered again hereafter, and we shall

then give general formule for the sine and cosine of n4 in terms
of the sine and cosine of 4 for any integral value of n.

113. It is easy to find expressions for the Trigonometrical
Ratios of any compound angle in terms of the Ratios of the com-
ponent angles. For example,

sin (4 + B+ C) =sin (4 + B) cos C +cos (4 + B)sin
=sgin 4 cos B cos €' + sin B co8 C cos 4
+8in C cos 4 cos B —sin A sin Bsin C.

Cos (4 + B + C) = cos (4 + B) cos C' —sin (4 + B)sin C

=008 4 eos B cos 0 — cos 4 sih Bsin C

— cos Bsin 4 sin €' — cos C'sin 4 8in B,

sin (4+ B+ C)
cos(4d + B +C)

_8in4 cos Bcos O+ sin Bcos O'cos A +sin C'cos A eos B—sin Asin Bsin (',
" c08.4 cos B cos C—cosAsin Bsin C— cos Bsin A sin C—cos Osin Asin B’

divide both numerator and denominator of the last expression by

Tan(4 + B+ ()=
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cos 4 cos B cos C'; thus we obtain
tan 4 + tan B + tan C — tan 4 tan B tan O
tan(d+B+0) =) an Btan C—tan Ctan d —tan d tan B
Suppose B and C' each equal to 4 ; thus we have ‘
3tan 4 —tan’4

tan 3= Stantd

114. 'When three or more angles are connected by some
relation, we may often find that some simple relation exists among
some of their Trigonometrical Ratios, thus, for example,

if A+ B+ C =180° then will
sin 24 + gin 2B + 8in 2C = 4 sin 4 sin Bsin C.
For sin24 +sin 2B =2sin (4 + B)cos (4 — B)=2sin C cos (4 — B)
and 8in 2C'=2sin C'cos C =—2 sin C'cos (4 + B), (Art. 48);
therefore ’
sin 24 +sin 2B +sin 20 = 2 sin,C {cos (4 — B) —cos (4 + B)}
= 4 sin C'sin 4 sin B.
Again, if 4 + B + C = 180", then will

v

14 sinlBsin%C.

cosA+cosB+oosC=l+4sin2 3

For cosA+cosB=9cos%(A+B)cos%(A—B)
.1 1
=2m§0ws§(A—B);
and : cosC=1- 2sin'}2—0; therefore
.1 1 .1
oosA+coaB+oosG=1+2sm§0{cos§(A-—B)—sm§6'j

=1+2sinl‘0{cos%(A—B)—-cos—1§(A +B)

2
.1, .1, .1

Again, if 4 + B + ('=180°, then will
tan 4 +tan B + tan C =tan 4 tan B tan C.
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For tan 180°=0, therefore tan(4+ B+ ()=0; and therefore by
Art. 113, tan 4 + tan B + tan C' — tan 4 tan B tan C'=0.
Again, by Art. 113,

1-tan BtanC—tanCtan 4 —tan 4 tan B
tan 4 + tan B + tan €' — tan 4 tan Btan C ’

now cot 90°=0; hence if 4 + B + (' = 90° then will
1 =tan Btan C + tan C tan 4 + tan 4tan B.

oot (4 + B+.0)=

115. For another example, suppose we have to investigate
what relation must exist among the angles 4, B, C, in order that

cos® 4 + cos® B+ cos’* €'+ 2 cos 4 cos Bcos C—1 may be zero.
cos’ 4 + cos" B+ cos* C'+ 2 cos 4 cos Beos C—1
=(cos 4 +cos B cos C)" + cos® B + cos® €' - 1 — cos’ B cos* C
=(cos 4 +cosBecosC)'+1—sin"B+1—sin*C-1

—(1 —sin® B)(1 —sin’ 0)
= (cos 4 + cos B cos C)* —sin® Bsin®' C
=(cos 4 + cos B cos C + sin B sin C)(cos 4 + cos B cos ' — sin B sin ()
={cos 4 + cos (B —C)} {oos 4 + cos (B + C)}

A+B-C A-B+C A+B+C B+C-4
=4 cos 3 cos 2——oos 3 cos 9

Hence in order that the proposed expression may be zero, one of
the four cosines last written must be zero, and thus one of the four
compound angles must be some odd multiple of a right angle.

MISCELLANEOUS EXAMPLES.

Prove the following formule :

L LB b G At dia
g Hn(4+B+0) 0 44 tanB+tan C—tan 4 tan BtanC.

cosd cosBeosC
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3. sin(a—pB)+sin(B—)+sin(y—a)
—-a
2
4. 4sin (0 a)sin (md — a) cos (0 — mb)

=1+ cos (20 — 2mb) — cos (20 — 2a) — cos (2m8 — 2a).

sin (a + B) cos B —sin (a +y) cos y =sin (B —y) cos (a + B8 + ).

cos(4 + B+ C)+cos(4d+B—C)+cos(4d+C—B)

+cos (B +C~A4)=4cos 4 cos B cos C.

08 20.+ cos 23 + cos 2y = 4 cos (a + B) cos (8 + y) cos (y + a)

=0.

+4sina;BsinB;ysin7

=1

—cos2(a+fB+7y).
8 sin A + sin B
" sin(4 - B)sin (4 - C) " sin (B—C)sin (B—-4)
sin O

R (C=Asm(C=B) "
9. cos(a+pB)sin B—cos(a+7y)siny
=sin (a + B8) cos B —sin (a +y) cos y.
10. sin(a+ B —2y) cos B —sin (a+y— 2) cosy
=sin (B—y){cos (B+y—a)+cos(a+y—B)+cos(a+B—17))
11. sin (4 + B+ C)sin B=sin (4 + B)sin (B + () —sin 4 sin C.

" 12. sinasin Bsin (8- a) +sin Bsin ysin (y— B)

+8in ysin a sin (@ — y) + sin (8 — a) sin (y — B) sin (a —y) = 0.
13. cos(a+ B)sin (a—B)+ cos (B + ) sin (8—7)
+ cos (y + 8) &in (y — 8) + co8 (3 + a) 8in (8 - a)=0.
14. sin (8 — B)sin (a— ) +sin (B —y)sin (a—38)
+sin (y — 8) sin (@ — B) =0.
If A+ B+ C =180 prove the following formule contained in

the examples from 15 to 35 inclusive.

" 16. sinA+dnB+shC=4mémgms s

A B C A B €
15. Wt-2—+00t§-+00t§=00t-§00t-§00t—2-:

Q

272

| ]



17.

18.
19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

EXAMPLES, CHAPTER VIIL w7
gin 4 —sin B +sin C=4 sin% oosg sin g

co824 +cos2B +cos2C +4 cosd cos BecosC+1=0.
cos4d +cos4B +cos4C+ 1 =4 cos 24 cos 2B é¢os 2C.

A4 B C x—A r~B #x-C
eos§+oos—§+oos-§—4cos 7 o8 7 o= 7y
oos——oos1—9+oosg—4oosw+lcos"r_'8 T+C

PR R N i T T
ainé+iinB 'ng—‘1—4 . 7—A . #-B . »-C

3 g +eing—1=4sin—— sin ——sin ——.
sin' 4 +gin* B +8in*C — 2cos A cos Beos C = 2.

8in' 24 + sin® 2B + sin® 2C + 2 cos 24 cos 2B cos 20 = 2.

A4 B B C C, 4
tan — 2ta.n2+tan 2ta.n2+ta.n2tau—=l

smA+smB—smO'_m:{_t B
sind+smB+sinC 2 0g"

1 + cos A cos B cos ' =cos 4 sin B sin C + cos Bsin 4 sin C
+ cos( 8in A4 sin B.

cot 4 + cot B + eot O = cot A cot B cot O
+ cosec A cosec B cosec C.

C' (smB+smC’ smA)(slnC’+smA—smB)
4sin 4 sin B

sin 4
sin Bsin O will retain the same

The expression cot 4 +

value if any two of the quantities 4, B, C, be interchanged.

32.

A B ()
tan 4 + tan B+ tan O ta.nitan gtang

(sin 4 +sin B +sin C)* “QcosdcosBcosC*
nd nB nC

sinnd +sinnB + sinnC:-isin%’—r 008 =,- €08 —- 008 -,

if n be an integer of the form 4m + 1 or 4m + 3.
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33. sinnd+sinnB+sinnC = —4cos-2-sm’—"§-sm%£sm’%0,

if n be an integer of the form 4m or 4m + 2.

34 ii+c §+cosg—4cosB+CcosA+0 A+B
S Rtk Rt I 1 T 71
tan 4 tanB+tanC+tanA+ta.nB tan C
tanB " tanC tand tanC tand ' tanB
=sec 4 sec BsecC - 2.

36. If the sum of four angles be two right angles, the sum of
their tangents is equal to the sum of the product of the tangents
taken three and three.

tan (4 - B O ]
antinA ) +Z:ﬂg= 1) Prove tha:t tanA ta.n.B:tan’a

35.

37. If

tan'a _ cos B (cos & — cos a)

38. -leen tan"ﬁ_cosa(cosx cos B)’
x_ s/? .
shew that tan2 tan® 2 .
2, COSQ sp_co8a’  tan § tana
39. Ifcos&-———cos#, cosG-cosﬂ, o = tena’
shew that ta.n’; ta.n'% -tan"B
40. If cosa = cos B cos ¢ =cos B cos¢’, and
f =9 al ¢_ . 'é’ 5o _ . B N4
sma-2sm2 sin 5 , shew that tan g =tan 2—tm 3
g1, n@—f) _sin(at6) , shew that
sin 8 " sing
cot B'— cot § = cot (a + 6) + cot (a— ).
tana tan
49. f<smo m”) = tan*a— tan® B, then cos § = f

43. 1If tan ¢ = cos G tan a, and tan o’ = tan G sin ¢,

then one value of tza.n"95 is tan a-;a n%i .
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44. TFind the relation between the angles a, B, y, when the
cosines are connected by the relation
1—cos®a—cos’ B —cos”y + 2 cos a cos B oos y=0.
5. I tan(:+a) =tan(z+ﬂ) =tan(0+1)

, then will
sm'(a. B) + sm’(ﬂ 7 + — sm’(y a)=0.

46, IftanO tan¢ -1 sin 0 _sing

tan’B , and sina  sin B’
‘ : . %+ gina
‘ shewtha.t m@:m.

sin(f—a) _a cos(f—a) o
=8 "5 ™ =B~ 5
aa’ + bb
then cos (a—B) = —— T ab

48. Having given tan ¢ = 13—:;—:1_:%_:020’ shew that one of the

é. (/] T 6
valuesofta.n§ mtangtan T-3)

49. Given cosf=cosacosB, cosf =cosa’cosp,

tan g tan%'—tan ﬁ, shew that sin’B = (sec a — 1) (seca’—1).

50. Having given that sin (B+C— 4), sin (C + 4 — B), and
¢in (4 + B — C) are in arithmetical progression, shew that tan 4,
tan B and tan C, are in arithmetical progression.

51. If the sines of the angles of a triangle be in arithmetical
progression, the cotangents of the half angles are also in arith-
metical progression.

52. If the sum of the squares of the cosines of the angles of a
triangle =1, the difference between the greatest and least a.ngle is
equal to the mean angle,
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53. 1If 4, B, C be the angles of a triangle, and
. C . C A B n-1
sin (A +§)—nmn§ , shew that t.an-itam§ =0
54. If A, B, C be the angles of a triangle, and
sin 4 =smB=smC’then
& Y

(a:—y)cot%+(y—z)oot%+(z—m)cotg=0.

55. If A + B+ C=mmr where m is any integer, then
tan 4 +tan B + tan C'=tan 4 tan BtanC.

56. If a, B, v be any angles, shew that
B oY

sina +sin B +siny—4 cos s c08 5 o8 3

2
=28ina_+ﬁzy_"{cos3a—ﬁ4-7+r+eos 3B—a4—7+7r
3y—a—-B+mw o+B+y—m

<+ Cco8

IX. CONSTRUCTION OF TRIGONOMETRICAL
TABLES.

116.  If 0 be the circular measure of a positive angle less than
a right angle, 0 is greater than sin 6 and less than tan 6.

Let 40B be an angle less than a right angle and let 0B = 04;
from B draw BM perpendicular to O4 and produce it to C so that
MC=MB; draw BT at right angles to OB meeting 04 produced
in 7) and join CZ. Then the triangles MOC and MOB are equal
in all respects, so that the angle 770C = the angle T0B; therefore
the triangles 70C and T'0B are equal in all respects, so that 7C0
is a right angle, and 7C = T'B,
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With centre O and radius OB describe an arc of a circle BAC;
this will touch B7 at B and CT at C.

Now we assume as an axiom that the straight line BC is less
than the arc BAC; thus BM the halfof.BG’isless than BA the

BM .
half of the arc BAC; themforeb—jmlessthanOB, that is, the

sine of AOB is less than the circular measure of 40B.

67

Again, we assume as an axiom that the arc BAC is less than
the sum of the two exterior lines BT and T'C; thus .BAis less than
BT; t.herefore’g%u less than OB’ that is, the clrcula.r measure of
AOB is less than the tangent of 405.

Hence sin §, 6, and tan 0 ave in ascending order of magnitude
if 0 be less than 7.

117. We have assumed two axioms in the preceding article ;
the first is so obvious that it will be readily admitted ; but the
second is more difficult. The student is recommended to postpone
this point for future consideration. It is however not difficult
to shew that the assumption may be made to depend upon another
almost identical with that which we have already been compelled
to make in Art. 14. For divide the arc BAC into any number of
arcs and draw tangents at the points of division ; then from the fact

T 6



82 ‘CONSTRUCTION OF TRIGONOMETRICAL TABLES.

that two sides of a triangle are greater than the third, it follows
that the perimeter of the portion of a polygen thus formed, is'less
than the sum of BZ and 7C by a finite difference. Moreover
this perimeter diminishes as the number of points of division is
increased, Now assume as in Art. 14 that the perimeter of the
‘polygon can‘be made to differ. ag little as we please from the arc
BAC by suffisiently increasing the number of sides and diminishing
the length of each side; thus: it follows that the arc BAC is less
than the sum of .BT and re. -

118.  The limit of* —9 when 8 is indefinitely diminished is

unity.

For sin, 6, and tan § are in a.scendmg order of magnitude ;
! cos0 are in ascendmg order
of magnitude. Thus g—:—l—é lies in value between 1 a,nd

divide by sin 6 ; therefore 1, 0 g’ a.nd

0 ,
when 4 is zero, cosf is unity; hence as ¢ diminishes mdeﬁmtely

.—05 approaches the limit unity. Therefore also ~ 5 approaches

-the hm1t umty

: * -tanf sinf 1 n @

s Andas l;‘_.lax o,thehmltofa—Twhenols
mdeﬁmtely diminished is also unity, C

o 119, It must be carefully remembered that in the important
‘proposmon of the preceding article, 0 is the circular measure of the
angle considered. If any other unit of angular measurement. be
adopted instead of the unit of circular measure, the limit under
: conmdemtxon 4will ot be unity. For examp]e, let us find the hmlt

fof when n is indefinitely diminished. Let 6 be the cxrcular

measure of an angle of » degrees, then 0= m ; thus

‘_‘si.un° sing - sm0
n 1_8_00—.80 o

T
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Now when n diminishes indefinitely, 6 does ‘80 also, and the limit

ofe—lggxs unity ; H henee the limit of when n 'is diminished

0
indefinitely is m, which is the circular measure of an angle of

’
-
when

oné degree.  Similarly we may prove that the limi'ﬁ of 32

n is indefinitely. ¢ dlmmmhed is the circular measure of an a.ngle of
one mmute, and so on. .

120, If 0 6e the cireular measure of @ positive angla less than

a 'nght angle sin 0 i8 greater than 6 —z N
) L0 8 . f 0
For sin 0= 2 sin ;5 cos 5 ; and tan 2 is. greater than , therefore

0

30%3)
0 0 0

sm -is greater than 2oosl ; therefore sm0 is greater than

2gcosa thagmgreaterthaneooa‘ tha.tmgrea.ter than

20 .

0(l—sm'g) Andsm2

5 pnﬂasgreatbrtha.nO(l 0') thatxs,smOmgmterthanH—e

is less than (2) therefore a fortiori

121. Thus We fee that 1f 0 lie between zero a.nd a nght angle

dnﬂislessthanoandgreatertha.na——. Andcos0=1—2sm2€.
ThuncosGmgreaterthan 1- 2(2) that is greaber than l—-g.

Alsodosﬂlslessthanl 2(2 32’) tha is less than

!
( ) therefore @ fortiori cos @ is less than
e e -
. ' . . 1-"‘—+_.
v o L T T2 Ie N
. 6—2
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'122. To calculate approximately the sine of 10”.

10

13 ” 18 —————— i ol >
The circular measure of 10” is 180 % 60 < 60’ that is 64800 °

therefore the sine of 10” is less than == < and greater than

If we take for = the approximate value

P 1/ = )'
- 64800 14 (64800 *
3-141592653589793...we find Bﬁ =000048481368110...; the
sine of 10” is therefore less than this decimal fraction. And m
is less than ‘00005, therefore a fortiori, sin 10” is greater than

000048481368110...... —%('00005)'; that is, sin 10” is greater
than -000048481368078......

We have thus found two decimal fractions between which
gin 10” must lie, and these decimal fractions agree in their first
twelve figures; therefore we may say that

sin 10” = 000048481368......
and we are certain that the error is less than %,..

The value of cos 10” may then be found approximately since it
is / (1 —sin" 10”); or we may make use of the results established
in Art. 121, Thus it will be found that as far as thirteen places
of decimals we have ‘

cos 10” = -9999999988248......

123. It appears from the preceding article that as far as
twelve places of decimals we have sin 10” = the circular measure
of 10”; and in the same way we may shew that sin 17 =the cir-
cular measure of 1” very approximately. And if » be any small
number of seconds, we shall have approximately sin n” = the circular

measure of #” =n times the circular measure of 1”=nxsin1”,
Thus n=th° sinml" of w approximately; that is the

number of seconds in any small angle is found approximately by
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dividing the circular measure of that angle by the sine of one
second.

124. 'We shall now shew how to calculate the sines of angles
which form an arithmetical progression having 10” for the common
difference.

Let a denote any angle, then

gsin(n + 1)a+sin(n—1)a= 2sinnacosa;
suppose 2 cosa =2 — %, then

sin (n +1)a + sin (s~ 1) a = (2 - ) sin na,
therefore gin (n + 1) a —gin na = sin na — sin (n — 1) « — & sin na.

Now suppose a=10", then sin a is known and cosa is known,
and therefore £ is known ; we put n =1, and thus we obtain the
value of sin 20”—sin 107, and thence the value of sin 20”; next
we put n=2, and thus we obtain the value of sin 30” —ain 207,
and thence the value of sin 30”; next we put #=3, and so on.
It will be seen that the only laborious part of this operation
consists in the multiplication by % of the sines as they are suc-
cessively found; but from the value of cos10” it follows that
%=-0000000023504, and the smallness of % facilitates the process.

125. When the sines of angles up to 45° have been calculated,
those for the remainder of the quadrant might be deduced by the
theorem

sin (45°+ 4) —sin (45° — 4) =2cos 45°sin 4 = ,/2.5in 4 ;
this would require the multiplication of the sines already found by
the approximate value of ,/2. If however we calculate the sines
of angles up to 60° those for the remainder of the qun.dmnt may
be very easily found from the theorem
sin (60° + 4) — sin (60° — 4) =2 cos 60°sin 4 =sin 4.

126. When the values of the sines of all the proposed angles
in the first quadrant are kmown the values of the cosines are also
known, for the cosine of any angle is equal to the sine of the com-
plement of the angle. The values of the tangents can be found by
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dividing the sine of every angle by the cosine of .that angle. ~The.
tangents of angles greater than 45° may be easily inferred: from:
those of angles less than 45° by the theorem

tan (45° +4)-tan (45°— 4)=2 tan 2A
which gives

tan(45°+A) = tan (45°— 4) + 2 tan 24.
The cotangents are known since the cotangent of any angle is equal
to the tangent of the complement of the angle.” The casecants may
be obtained by calculating the reciprocals of the sines ; they may,
however be obtained- more simply from the tables of tangents by
the theorem

1 A A
cosecA:E{tan 2+cot. 2}

The secants are known since the secant of any angle is equal.
to the cosecant of the complement of the angle, : :

127. Inthe method adopted for calculating the sines of angles,
theé sine of 10” was first obtained to twelve places of decimals, and
then the values of sin 207, sin 30", &c. were deduced in succession.
It will not however follow that the values of the sines of all the’
angles are correct to twelve places of decimals, and it is therefore’
useful to be able to test the extent to which the results are correct ;°
and moreover it is essential to be able to test the. correctness with
which the calculations are performed. We may for this purpose
compare the value of the sine of any angle obtained in the manner
which has been explained with its yalue obtained independently.”
Thus, for example, we know that sin 18°=""—,5—4_—1- ; thus the sine.
of 18° may easily be calculated to any degree of approximation, and
by comparison with the value obtained in the tables we can judge
how far we can rely upon the tables. There are however two-
formuls which are usually called formuls of verification from the
faot that they can be easily used to venfy any part of the calculated
tables. These formule are

sin 4 +sin (72° + 4) — sin (72° ~ 4) = 5in (36° + 4) —sin (36°— A),
cos A +cos (72°+ 4) + cos (72°~ 4) = cos (36° + 4) + 008 (36° - 4) ; -
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they may be readily proved:; for
sin (72° + 4) — sin (72° — 4) = 2 008 72° sin 4 = 51 sin 4,

2
s (36" + 4)  sin (36" ~ 4)= 3 oos 36°sin 4= gy,
herefore sin A +sin (72°+ 4) — sin (T2 A) smA+J5 lind

,/5+1

sin 4 =sin (36°+ 4) — sin (36° - 4).

S1m1larly the second formula may be proved ; or 1t may be deduced’
from the first by changing 4 into 90°— 4.

Then if we ascribe any value to 4, and take from the tables
the values of the sines and cosines of the angles involved, these
values must satisfy the formule of verification to a certain number
of places of decimals, if the tables have been correctly calculated to
that number of decimal places.

128. Some further remarks upon Trigonometrical Tables will
be given in a subsequent chapter, in which we shall explain the
method of using such tables. We will add here some theorems
which will extend the results obtained in Art. 121; these theorems
will furnish interesting examples although not of any immediate
practical importance. .

129. The limit qfoos‘fcos”-” 3

4:008

cos ;’; when the integer

sin

n 18 indefinitely mcreaaed s ——.

B .. @ x
For smav=2sm-2-oos§
—aisi.nfoos‘i’cossf ?
- 477472

=8sin & cos = cos = cos =
sOsMgeRgosgEy -

..................

2 ou....o0n "% oos ¥ oou
2: 2—. ------ 8 4 2-
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x x x x sin 2
Therefore €08 5 COS - COB ...... 008 — = .
277478 2 P
2-
x
Now sing _sing 2°
n s X r |, x
2 sm-é; smﬁ—,

sinz

and the limit of this when = is indefinitely increased is’ 2’

x

since by Art. 118, the limit of _L is unity. This result is

sin —

2.
sometimes cited as Euler's Formula. -

130. To prove that if x be the circularmeasure of @ positive angle
less tham a right angle sin wiagreaterthcma;-—%.

By Art. 121, cosz is greater than 1 —i’;

x .
therefore 008 5 cos 7 is greater than (l —;—::) (l - ;i:) ,

and ajbrtiorigteaterthanl—(;+f:);

* x . ‘
therefore c08 5 €08 7 Co8 ¢ is greater than{ (2—,+ a:')}{ 27},
and afortiorigreaterthanl-<?+§5+ ;;)
By proceeding in this way we find that
z x :
cos‘-éoosz CO8 goeneee cos = 5 is greater than

x* a:' «* o
1-(21+?+§7+ ...... +2Ti)’
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1

. 11—
that is, greaterthml—;—z;.,
1—~—
: 5

. * x*
that is,  greater than 1 —- =53 .),
. . '
and afm‘ongreaterthanl-—é—.
Hence, by Art. 129,

f%a—’isgreaterthanl-i',

therefore aina:isgreaterthanz—%.
By proceeding as in Art. 121, we may now shew that
& o

cos 2 is less than 1 - —

, TS
(Serret’s T'rigonometry.)

MISCELLANEOUS EXAMPLES.

1. Let P be any point in a semicircle whose diameter is 4B
and centre C'; draw PM perpendicular to 4B, and draw P4, PB;
from this construction, observing that the angles BPM and PAM
are each equal to half of PCB, deduce the formula

1-cosd .|
Tromd 23

6
acosp—b tan 5 tan

a—bcos¢’thenJ(a+b) VLN
3. Iftan’d=2tan’$+ 1, then cos 20 + sin’$ = 0.

[ IR N

2. Ifcosf=

4. If sec 20 =2s8ecl cosech, then cosec 20 = cosec’d — sec'd.
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5. If tan 0 =ntan¢, shew that tan’(f — ¢) cannot exceed

(n-1) : Cy
4n .
6. Redueesm0+xm¢ oosOsm(0+¢)toasmgleterm
7. Shew that o T SR
gin Bcosa(tana+tanf) sind(a— p) 1
T T —cos(a+f) +—cospm{(a_+'p)

8. What is approximately the height of an _obJect which at
the distance of a mile subtends at the eye an angle of one minute?

9. Find approximately the distance at which a circular plate
of six inches diameter must be placed so as just to conceal the
Moon, supposing the appa.rent diameter of the Moon to be half a
degree. '

10. Ifsin 34=nsin4 be true for any value of 4 besides zero,
or two right angles, or a multiple of two right angles, shew that n

must lie between 3 and —1; solve the equation when n= 2.
\

1L Iftanﬁ_’;;—"n%,shewthattan(a B)=(1-n)tana.

12. If sin 30 be given, determine the mumber of values of
tan 6.

13, Prove that 64 (cos’4 +sin4) = cos 84 + 28 cos 44 + 35.

14, Find all the values of § and ¢ which satisfy
cosfcosp+1=0.
15." If n*sin’ (a + B) =sin’a + sin® — 2 sin a sin B cos (a — B),
shew that .
ta.na——;_}*”

%, when @ iy mdeﬁmte]y

tan .

16. Find the limit of
]u s - ]d.
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Solve the following equations :

17.
18,
19.
20,

21.

22.

23,

24,

25.

26.

.

28.

29.
30.
31
32.
33.

34,

35.

ooch:cosec2

sin 6 + cos 8 =,/2.
/3 8in 6 — cos 6 =,/2.

"8in 20 = cos 8.

(4—/3) (sec 0 + cosec 6) = 4 (sin 6 tan 8 + cos 8 cot 6).
cos 6 — cos 20 = gin 30. . N '
cot 6 — tan 6 = cos 0 +sin 6.
2 5in®0 + sin® 20 = 2.

-

tan 6 + 2 cot 20 = sin @ (1+taﬁo£ang)."'

sin’20—sih’0=ain’%'.
3
cos0qos30=oqs5000s70.v

éinﬂsin30=%.

sin®@ + sin® 20 = 3.
(1 —tan ) (1 +8in26) =1 + tan 0.
sin 6 + sin 20 + sin 30+sm40 0

sin 6 — 0030 4sm0 6.

(cot— tan6)* (2 — /%) = 4 (2 +./3).
2,/2 cos ——0>(l+am0) l+oos20

sin90+sm50+2sm’0=1.
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X. LOGARITHMS AND LOGARITHMIC SERIES.

131. It will be necessary now for the student to become
acquainted with the nature and use of logarithms, and the mode
of calculating them. As it is usual to introduce into works on
Trigonometry a chapter on these subjects, we shall repeat here
what we have given in the Algebra.

132. Suppose a®=n, then z is called the logarithm of n to the
base a.; thus the logarithm of a number to a given base is the
index of the power to which the base must be raised to be equal
to the number.

The logarithm of n to the base a is written logn; thus
log,n =2 expresses the same relation as a*=n.

133. For example 3= 81 ; thus 4 is the logarithm of 81 to
the base 3.

If we wish to find the logarithms of the numbers 1, 2, 3, ......
to a given base 10, for example, we have to solve a series of equa-
tions 10*=1, 10°=2, 10°=3,...... ‘We shall see in some sub-
sequent articles that this can be done approximately, that is, for
example, although we cannot find such a value of # as will make
10°=2 exactly, yet we can find such a value of z as will make 10"
differ from 2 by as small a quantity as we please.

‘We shall now prove some of the properties of logarithms.
134,  The logarithm of 1 is O whatever the base may be.

For a" =1 when 2=0.
135.  The logarithm of the base itself is unity.
For a"=a whenx=1.

136. The logarithm of a product is equal to the sum of the
logarithms of its factors.
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For let z=log,m, y=1log,n;
therefore m=a’ n=a";
therefore mn=a"a’ =a"*?;
therefore log, mn =z + y=log,m +log,n.

137 The logarithm of & quotient is equal to the logarithm of
the dividend diminished by the logarithm of the divisor.

For let x=log,m, y=logn;
therefore m=a", n=a";
m &
therefore Pl v,

therefore log.g =z —y=log,m— log,n.

138. The logarithm of any power, integral or fractiondl, of a
number i8 equal to the product of the logarithm of the number by the
index of the power. :

For let m =a"; therefore m"=(a*)" = a”,
therefore log, (m") = 2r =7rlog,m.

139. To find the relation between the logarithms of the same
number to different bases.

Let z=log,m, y=log,m;
therefore m=a"and =¥";
therefore a=V;
therefore a;=b, and bf=a;
therefore §= log,b, and g =log,a.

=21 d=—2_

Hence y =zlog,a, an ~log3"

Hence the logarithm of a number to the base b may be found
by multiplying the logarithm of the number to the base a by

1
log,a, or by Togb "
We may notice that log,a x log.b=1.
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140. In practical calculations the only base that is used is

10; logarithms to the base 10 are called common logarithms, We

will point out in the next two articles some peculiarities ‘which

constitute the advantage of the base 10. We shall requu‘e the fol-

lowing definition; the integral part of any logarithm is called
" the characteristic, and the declmal part the mantissa. -

141. In the common system of logarithms, if the logarithm
of any number be known we can 1mmed.1a.tely determine the loga-
rithm of the product or q'uohent of that number by any powei'
of 10. 5

For  log,10"x N= long + longO =log, N +m
N
logmﬁ" logloN logxolo = logon—

- That is, if we know the loganthm of any number we can
{determine the logarithm of any numbér wlnch'has,the sa.mp
figures, but di.ﬂ'ers mérely by the position of the‘ décimal point

142. 1In the common system of loganthms the charactenstlc
of the loganthm of any number can ‘be determined by J.nspectlon.

* For suppose the number to be greater than unity a.nd to lie
between 10" and 10"*; then its logarithm must be greater than
n and less than n +13; hence the charactenstlc of the loga.nthm
is n. O

Next suppose the number to be less than unity, a.nd to lie
between 1}), and i 0{“ o+ that is, between 107" and 107¢*";_theu
its loga.nthm will be some negative quantity between —n and
—(n+1); hence if we agree that the mantissa shall always be
positive, the cha.ra.ctenatlc will be.~(n +1).

‘We shall now prooeed to investigate formulaa for the calcula-
tion of loga.nthms.

143. To expand a* in a series of ascending powers qf x; that
18, to expand a number ‘in a 3ems‘qfaacendmg powersofm
logarithm to a given base.
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z(z 1)

= {1+(a. 1)}‘—1+a:(a 1)+ (a 1y

+?£#g_ff3:._2_)(a_ 1y + z(‘” 1)(‘” 2) (2~ ' 3)(a 1)‘

=l+z{a—1-}@-1 +}( ‘1)' }(a 1)}
+ terms involving o, 2, &e. .
Thls shews that a* can be expanded in & series beginning
with 1 and proceeding in ascendmg powers of x; 3 we may there-
fore suppose that .

9" = 1+-c:c+c,z’+e,’a:‘+c.af+....-..

-where:e, €, Cgp «eeeei ;. are quantities which do not depend on z,

and wluch therefore remain unchanged however & may be
changed ; also o
g=a-1=4(@-1y+«3(a-1 =~} (@-1)*+......

.while- ¢,, ¢, ...... are at present unknown; we proceed to find
-their values. Changing z into # +y we have

a=1+c (x+y)+c (B+y) '+ @+Y) + ey -

but a'*’—aa’:a’{l+cw+ca:‘+c,z’+, ..... |8

Since the two expressions for a**¥ are identically equal, we

"ma.y assiume that the coefficients of z in the two expressions are

equal, thus

g e e R 28y + 3oyt + 4c‘_1/"+,..;..;-=ca’ -

=q{l+ey+ey +cy +...... } :
In this identity we may assume that the coeﬁiclents of the
eotrespondmg powers of y are equal thus  ©
. l . N
2c, =c'; therefore, =5

2 y
o ee. . eb
Be=ag,;  therefore; .= “y¥="rt—,
P X ¢
- ey=cea;  therefore, °4‘T'" 1 20.' 3.4

AL ’w’ ‘z‘

=1 ERMNER
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'

Since this result is true for all values of 2, take = such that

cx=1, then:c:la.nd
ll 1
a’ _1+1+ l§ E ...... H
this series is usually denoted by e; thus a l--e, therefore @ = ¢
and ¢, =log,a ; hence,

@=1+(log,a)z + (l°g~é>' o (loga)'s

L§ + oceeene
This result is called the Zxponential Theorem.

Put ¢ for a, then log,a becomes log,¢, that is, unity, (Art. 135);
thus,

=1 +:c+ L L l—_— ......
With respect to the assumption which has been made twice
in the course of this article, the student is referred to the chapter
on Indeterminate Coefficients in the Algebra.

144. By actual calculation we may find approximately the
numerical value of the series which we have denoted bye; it is
2-718281828......

" 145. To expand log, (1 + x) in a series of ascending powers
of x.
We have seen in Art. 143, that ¢, =log,a; that is, by
the same Article,
loga=a-1-3(@@-1l+3(@-1)"-1(@-1)+......
Fora put 1 +2; hence,

o o
log,(l+a:)-z——2— g
This series may be applied to calculate log,(1+2) if ® is &
proper fraction ; but unless & be very small, the terms diminish so
slowly that we shall have to retain a large number of them; if =
be greater than unity the series is altogether unsuitable. We
shall therefore deduce some more convenient formule,
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146. We have

z 2
log,(1 +,:c)—a:——2— tg e
= £ o
th — R i R —
erefore log,(1-2)=—= " F "% s
by subtraction we obtain the value of log, (1 +z)-log, (1 -2),
that is, of log,}+x
l+a « a:‘ \

therefore log,lT _2{ Ttgt gt freeo

l+2
l-z

] _n_z=2{m—'n+1 m—n)’+_1_ m—-n)‘+ } a
og, ~ =t 3tnan) Y5leas) Fo e )

Put n =1, then

log,m = 2{ (:+ }) (m+ i } ...... (2).

Again in (1) put m=n+1, thus we obtain the value of

log, %l therefore

In this series wnte

for «, and therefore — for

thus

log(n +1)~logn

1 1 1
=2{2n+ 1 + 3@n+ly + 5@n+ 1),+ }(3)

147. The series (2) of the preceding article will enable us to
find log, 2; put m = 2, then by calculation we shall find
log,2 = 6931471 ...

From the series (3) we can calculate the logarithm of either of
two consecutive numbers when we know that of the other. Put

T. T. 7
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n=2, and by making use of the known value of log,2, we shall
obtain

. log,3=10986122......

Put =9 in (3); then log, 9°=log, 3"=21log, 3 and is therefore
known; hence we shall find '

" log, 10 = 2:3025850...... "

3

Logarithms to the base e are called Napierian logarithms, .
from Napier the inventor of logarithms; they are also called
natural logarithms, being thosé which occur first in our investi-
gation of a method of calculating logarithms. We have said
that -the base 10 is the only base used in the practical appli-
cation of lbgarith,ms,'bﬁt lpgarithms to the' Napierian base occur
frequéntly in theoretical investigations. -

148, From Art. 139 We see that the logarithm of a number

to the base 10 can be found by multiplying ‘the Napierian loga-

1 . 1 mino i s

rithm by 15, that i by gonorerng, oF by 43429448 this
multlpher is, c&lled tlle moduhw of the common system.

The series-in Art 146 may be so adjusted as to give common
logarithms; for example, take the series (3), multiply throughout ’
by the modulus which we shall denote by p; thas -

1 1 1. Yy
"1°g'("+1) plogn = 2"{2 +T 3(2n+ 1y *5@n s 1)' };
that'is, .. :

. o1 11 ..
log,, (n +1) ~log,;m = 2 {2n+ I 3@+ Y 6@nsIp }

. Similarly from Art. 145 we have

.. , . & o a:‘ ) .
vy b 8 A
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149. The quantity e i3 incommensurable. .

- For suppose if possible e= g , where m and n are intégeré ; thus

r.r_& —94 1 + 1 1 R
n E -B + 4 vee
mubtiply: both sides by lll;th'en T -
1= ‘1 1 . 1.. -
m|n—1=an integér + -7 (n+ I)(n+2) (n+1)(n+2)(n+3)
1 1 . S |

But .

e B T on S e G+ 2+ 3)*

is a fraction, for it is greater than ——lﬁ and less than the geome-
trical progression - .

1 . 1 . 1 N
n+l (n+1)  (n+1) 7 e

that-x‘s',leséthmil. R A

Thus the difference of two integers is equal to a fmctlon, Whlch
is absurd. " Therefore ¢ is mcommensurable. ‘

150. We will conclude this chapter by mvestlgatmg two
llmlt.s which w111 be useful hereafter:

To ﬁmd tlw lzmu of (cos ) when n 8 mcreased mdeﬁmtely

() (atfren
log u = log(l—sm )——]og(l sin® )

o f_ sin'— +151n +1°‘—1+ )
2 2 3 T

7—2
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. @
sin -
n
Now n sin;zz a=—m—=a when % is increased indefinitely (Axt.
n

118); therefore = sin’>=asin= =0 ultimately; and similarly
n n

nein* s, n sin® o, ... vanish ultimately. Therefore logu=0;
n n

therefore #=1. Thus the required limit is unity.
oan" '
sin — )

To find the limit «y’( - ”) when 1 is increased indefinitely.

n

a
sm-
‘We know by Art. 116 that —1s less than 1 andgreaterthan

n
. @
sm - sin — .
, that is, greater than cos— hence an is less than 1" or
tan 2 ;"

1 and greater than (cos £>-; and by the preceding article the

. Q@
' s —
limit of (cos ;:) is wnity, therefore the limit of { == |isunity.
n

MISCELLANEOUS EXAMPLES.

1. Find the logarithm of 128 to the base /4.
2. Find the logarithm of 243 /9 to.the base /3.

3. Find the following. logarithms, log, 2187, logm 0001,
log’m450 .....
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4. Find approximately the value of z from the equation
56-0: = 2:01,

having given log 2 = -301030.

5. Given log-224=a and log125 =, find log 2 and log 7.
6. Required the characteristics of log,725, and of log,/(0725).
7. Given log 2 = 301030, log 405 =2-607455, find log -003.

8. Given log2=-30103, log7=-845098, find log98 and

log (%E)i

9. Given log 2="301030, log 3 = 47712, find log (:0020736)}.

10. Determine the sum of the series
2 4 . 6
B'E'T
11. Shew that

_1_+l+2+1+2+3+1+2+3+4
ERERT E

+...ad inf.

e .
3 +...ad inf.

Find 2 from the following six equations :
12. 4sinzsin (z—a)=2cosa—1.

13. cospf ./(a'~2’) +asin a=axsinB.

14. sina+ sin (z—a) +sin (22 + a) = sin ( + a) + 8in (22 - a).

3 1 .
15. cos z+§)a+cos(:c+-2-)a=sma.

16. a*cosacos (a - g)+xm(a—ﬁ)=2emg.
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17. cot2*'a—cot 2% = cosee 3a.
18. Solve the equation m vers 6 = n vers (a — 0)'.

19, Solve the equation cosnf + cos (n—2)0= 0050 o '
'20. Solve ‘the followiné equation, and shew that there are )
.’seven positive values of § greater than 0 and less than 2,

gin @ + sin 30 = sin 26 + sin 44. )
21. Find tanz from the equation tan z =tan S tan (a.+ 2);

"and shew that in order that tanz may be real, tanﬁ must not
lie between (sec a — tan a)® and (sec a + tan a)’.

- 22, Fmd the least value of 0 which satmﬁes

(- 0)rim(§ ) = (L) .

23. Given sin*(» + 1)6 = sin*n + sin’(n — 1)@ where (n + 1)6,
nf, and (n—1)0 are the angles of a tnangle, find an 1ntegral
value of n.

24. Reduce to its simplest form .and solve the eciﬁatié_n

008" 0 — cos*a = 2 cos"0(cos 0 — 0os a) — 2 sin®H(sin § — sin a).

95. Shew that all the aﬁgIes which have the same sine as
a are included in the formula (2n+2)1r*(—-— ) o

26 Shew tha.t all the angles which ha.ve ‘the same cosine

as a are 1ncluded in the formula n+2>1r+(— 1) (a.-——g .

. e

27. The amblgmty ~in the formula "

f A .4 0 0
- m§7gw§‘=*J(1va4). :
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‘may be replaced by (- 1)", where m is the greatest mteger con-

tained in 17;)6; 4 4 being expressed in degrees.

28. The ambiguity = in the formula

4 _+,/1+tan'4) -1

2 tan 4

way be replaced by (- 1)", where m is the greatest mteger con-

9(; ;OA , A being expressed in degrees.

-tan

tained in

29. If tan (cot)=cot (tan z), shew that the real values of
zare given by sin 2z = @5—3—1);, where 7 is any integer except — 1.

30. Shew how to express cos ; in terms of cos 4, where n
is any positive integer.

31. From the -equation cosx = J 1+ (;)ﬂ deduce the

formula for sinz in terms of sin 2z, and shew how the proper
signs for the radicals may be determined.

32. If the expression
" A cos (8+a)+Bsin(0+B)
Asin(0+a)+ B cos 0+ )

retam the same va.lue for all values of 9 then w111
. 44—~ BB = (A’B AB') sin (a — B).

33 If the sum of two angles is glven, shew. that. the sum
of their sines is greatest and the sum of their tangents is least
when the angles are equal.

34, If A+ B+C=90° shew that umt.y is ‘the least va.lue
of tan’4 + tan®B + tan’C. .
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35. If 4 +B+(C=180° shew that unity is the least value
of cot’ 4 + cot® B + cot*C.

36. If A+ B+ (C=180° then
2 cot 4 + 2 cot B + 2 cot C is greater than

cosec A + cosec B + cosec C.

37. Shew that the sum of the three acute angles which satisfy
the equation cos’ 4 + cos® B + cos*C'= 1 is less than 180°.

38. If each of the angles 4, B, C be less than 90° then
sin (4 + B +C) is less than sin 4 + sin B +sin C.

a2
39. Find the limit of (cos i) when s increased indefinitely.

n3 :
40. Find the limit of ( cos s) when 7 is increased indefinitely.

tan®4
5+

-

41. Shew that sin § is greater than tan 6 —

XI. USE OF LOGARITHMIC AND TRIGONOMETRI-
CAL TABLES.

151. In the preceding two chapters we'have shewn how
tables of the values of the Trigonometrical Ratios may be cal-
culated and how tables of logarithms may be calculated, and we
shall now shew how to use such tables; we begin with tables of
logarithms. It is obvious that tables of logarithms may be cal-
culated to various degrees of approximation; they may be calcu-
lated to 5, 6, 7 or a higher number of decimal places. For a list
of logarithmic and trigonometrical tables the student may consult
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the articles Zables in the Penny Cyclopedia and its Supplement.
Different tables present some variety in their mode of arrange-
ment, and are usually accompanied with full explanation of their
peculiarities and the methods of using the tables; we shall not
enter into any minute account of the way in which tables may
be used with the greatest advantage, but shall give such general
illustrations as will enable the student to avail himself of any
set of tables for the purpose of occasional calculation. The loga-
rithms will always be supposed taken to the base ten.

152. 'We may observe that throughout all approximate cal-
-culations it is usual to take for the last figure which we retain,
the figure which gives the nearest approach to the true value.
Thus for example, suppose we have the decimal fraction -3726;
if we wish to retain only three places of decimals we should write
373 and not -372; the former is too large and the latter too small, -
but the excess in the former case is ‘0004, and the defect in the
latter case is “0006, so that there is a smaller error in the former
case than in the latter case. Thus we have this general rule,
when only a certain number of decimal places is to be retained—
sirike off the rest of the figures and increase the last figure retained
by 1 ¢f the first figure struck off be 5 or greater than 5.

‘We now proceed to explain the use of tables of common loga-
rithms ; and we shall use tables of seven places of decimals.

153. To find the logarithm of a given number.

If the number be contained in the Table we have merely
to take the decimal part of the logarithm immediately from the
Table and prefix the characteristic (Art. 142). For example,
required the logarithm of 534. The table gives ‘7275413 as
the decimal part, and the characteristic is 2; therefore

v . log 534 =27275413.
Similarly, log 53400 = 47275413,
log ‘0534 = 2-7275413.
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In the last example the characteristic is —2, and this is de-
" noted by the bar placed over the 2.

Suppose, however, that the given number is not contained
in the Table; the Table for instance may give the logarithms
of numbers from 1 up to 100000 and we may require the logarithm
of 5340234. ' Here we can take from the Table the logarithm
of 5340200, and the logarithm of 5340300; we have

log 5340300 = 67275657
log 5340200 = 6-7275575
difference = ‘0000082

.The required logarithm of course-lies between the two logarithmi
.which we have taken from the Table. Now we see that cor-
:responding to the increase 100 in the number there is an increase
-+0000082 in the logarithm; and we assume that corresponding
to an increase 34 in the number ‘there will be a" proportional
increase in the logarithm. Let x denote’ the quantity which
we must add to the logarithm of 5340200 in' order to obtain
the: logarithm of 5340234;- then we have from the assumptlon
which we have made the followmg proportlon
' 100 : 34 :: -0000082 :
therefore o= % %--0000082 = '000002§ (Art. 153);

therefore log 5340234 = 67275575 + 0000028 = 6-7275603.

154, We gesumed jn the preceding article that the increase
in a logarithm is proportional to the increase in the number; this
is a case of what is called thé prmczple of proportwnal parts, and
‘although it is not strictly true, yet, it is in most cases sufficient for
‘practical purposes. - We shall in the next chapter mvestlgate the
‘'subject, and shew to what degrée of approxlmatlon we can rely
upon the principle of proportwnal pa,rts oo

155. The process ngen in Art, 153 is facﬂlta.ted in large
Tables in the followmg manner Reqmred the ‘logarithm of
23453487. o
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log 23454000 = 7-3702169 .
- log 23453000 = 7-3701984 Proportional Parts.

difference = ‘0000185 ]
Here by the process of Art. 153 we have to

multiply 0000185 by - that is, by 15+ 1o

.+ﬁ;%6. Now the multiplication is effected for

O DA DI
8

us, and ‘the results given in a small Table headed Proportional
parts, which is printed on the same page as the two logarithms
which we have taken from the Table ; the small Table shews that
4x-0000185 =-0000740, 8 x -0000185 = 0001480, 7 x 0000185
.=-0001295 ; and from these results, by dividing by 10, 100 and
-1000 respectively, we obtain the three parts which we require.
The process may be arranged thus :

: log 23453000 = 7-3701984

add for 4 ‘740
©8 1480

7 1295

‘ 7-3702074095

therefqre, retaining 7 places of decimals, .
log 23453487 = 7-3702074.

156. We have taken as our example a whole number ;. if a
decimal fraction, or a mixed quantity formed of a whole number
and decimal fraction, be given, we may throw aside the decimal
point, and find the decimal part of the logarithm of the whole
number thus obtained ; then by prefixing the proper characteristic
we have the required logarithm. - Thus, for example, required the
logarithm of ‘23453487 and of 234:53487.. The decimal part of
the logarithm is ‘3702074 ; therefore

" log *23453487 = 1-3702074
log 23453487 = 2-3702074.

/7
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157.  To find the number which corresponds to a given logarithm,|

If the decimal part of the logarithm be found in the Table, w
have merely to take the number which corresponds to it, and puf
the decimal point in the number in the place indicated by the
characteristic. For example, required the number which has for
its logarithm 2-7275418. Corresponding to the decimal part
‘7275413 we find in the Table the number 534, and as the charac-
teristic is 2, there must be one cypher before the first significant
figure (Art. 142); therefore the number which has the given
logarithm is 0534.

Suppose, however, that the decimal part of the given logarithm
is not contained exactly in the Table; for example, let the ‘given
logarithm be 1-3702074, we shall find that the decimal part of this
logarithm is not in the Table; we have, however, corresponding to
the number 23454 the decimal part of the logarithm -3702169,
and corresponding to the number 23453 the decimal part of the
logarithm 3701984 ; thus " - 1:f

log 23454 = 43702169
log 23453 = 4-370108{

difference = -0000185

The excess of the given decimal part of the logarithm above
-3701984 is -3702074 — -3701984, that is ‘0000090. The required
number of course lies between ‘23454 and 23453 ; let d denote
its excess above 23453, then assuming that the increase of the
number is proportional to the increase of the logarithm, we have .

0000185 : 0000090 :: 1 : d;

90
therefore d= '1—8—5' = 489.
Therefore log 23453-486 = 4-3702074,

- and- log 23453486 =1-3702074 ;
thus the required number is -23453486.
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158. 'We may save the labour of dividing 90 by 185 in tHe
preceding example by means of the Table of Proportional parts
given in Art. 155; the process of division, if performed, will stand
thus : :
185)90-0(486

740
1600
1480

1200
1110
Now the products 740, 1480, 1110, are furnished ready in the
Table referred to, so that we need only perform the subtractions
ad put down the following steps :
90
4 740

160
8 1480

1200
6 1110

159. We will now give‘some examples of the use of logarithms.
Required the product of 3670257 and 12:61158.

Log 36702 = 35646897
5 60

7 8

Log 3670-257 = 36646965
Log 12:611 =11007495
5 172

8 28

Log 1261158 = 11007695
3:5646965

by adding the logs 4-6654660
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' Decimal pait of log 46287 = 6654590

70
7 66

4 T40
4628774

Thus the required number is 46287:74, the position of the
decimal point being determined by the characteristic 4.

160. Required the quotient of ‘1234567 by 54-87645.

. Log ‘12345 =T-0914911 . S
o 6 211 :
7T 25
Log ‘1234567 = 1-0915147
Log 54876 = 17393824
4 32
5 &
Log 5487645 = 17393860

10915147
, 17393860 - .
by subtracting 33521287 C

Decimal part of log 22497 = -3521246

2 T 41
9 38 -

2249722 © 30 -

Thus the required number is ‘002249722 ; -there are two
cyphers before the first significant figure, because the character-

istic of the logarithm is 3..
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61. ‘Required the cube of +3180236.
Log 31802 =1-5024544

3 41
6 8
Log 3180236 = 1-5024593
____ 3
25073779
Decimal part of log 32164 = 5073701
78
5 67
. 8§ . 110
3216458

Thus the required number is *03216458.

. 162.  Required the cube root of 3663265.
Log 36632 = 1 5638606

6 71

5 6

Log ‘3663265 = 1:5638683 . :
" We have now to divide 1-5638683 by 3 ; that is, we have to
divide — 1 +°6638683 by 3. It is convenient to write the num-

ber to be divided thus, — 3 +2:5638683 ; then by d1v1d1ng by 3
we obtain — 1 + ‘8546228, that is, T 8546228, '

1-8546228
Decimal part of log 71552 = 8546218
E T

-2 . 100
7155202 :

Thus the reqmred number is 7155202,

We now proceed to the use of Tngonometncal Tables. -

163. Toﬁ/mitheszmqfagtmnglc .
If the given angle be-one which is Qontamed in the Table of
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the sines of angles the required sine is furnished immediately by
the Table ; we proceed then to the case when the given angle lies
between two which are contained in the Table. For example, re-
quired the sine of 44° 35’ 25”, having given from the Table

sin 44° 36" = 7021531

sin 44° 35’ = 7019459

difference = *0002072

The required sine of course lies between the two sines which
we have taken from the Table; let = denote its excess above the
sine of 44° 35, and assume that the increase of the sine is propor-
tional to the increase of the angle, therefore

60” : 257 :: 0002072 : =,

.

therefore  z= % x 0002072 = -0000863.

Therefore sin 44° 35" 25” = 7019459 +-0000863 = -7020322.

We have thus again assumed the principle of proportional
parts, and we shall assume it throughout the present chapter,
reserving the investigation of it for the following chapter.

164.  To find the angle which corresponds to a given sine.

If the given sine be found in the Table the required angle is
furnished immediately by the Table ; we proceed then to the case
when the given sine lies between two which are contained in the
Table. For example, required the angle which has for its sine
*6970886, having given from the Table

sin 44°12"=-6971651
sin 44° 11’ =-6969565
difference = 0002086
The excess of the given sine above the sine of 44° 11" is
6970886 — 16969565, that is, 0001321,

The required angle of course lies between the two angles which
we have taken from the Table ; let » be the number of seconds in
its excess above 44° 11, then

-0002086 : ‘0001321 :: 60 : n,
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0001321 60 x 1321
0002086 ~ 2086

Therefore the required angle is 44° 11’ 38"

therefore n=60x =38.

165. To find the cosine of a given angle.

If the given angle be one which is contained in the Table of
the cosines of angles, the required cosine is furnished immediately
by the Table; we proceed then to the case when the given angle
lies between two which are contained in the Table. For example,
required the cosine of 44° 35’ 25”, having given from the Table

cos 44° 35'=-7122303
cos 44° 36'=-7120260
difference = ‘0002043

Since in the first quadrant the cosine decreases as the angle in-
creases, the required cosine will be less than the cosine of 44° 35,
and the required cosine of course lies between the two cosines

which we have taken from the Table; let x denote its defect
below the cosine of 44° 35’, then

60 : 25 :: 0002043 :

therefore = ﬁ% % 0002043 = -0000851.

Therefore  cos 44° 35" 25” = 7122303 — 0000851 = 7121452.
166. To find the angle which corresponds to a given cosine.

If the given cosine be found in the Table the required angle is
farnished immediately by the Table; we proceed then to the case
when the given cosine lies between two which are contained in the

Table. For example, required the angle which has for its cosine
. *T169848, having given from the Table -
cos 44°11'=-7171134
cos 44°12'=-7169106

difference = ‘0002028 .
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The given cosine falls short of the cosine of 44° 11’by 7171134
— 7169848, that is, by ‘0001286 ; the required angle of course lies
_between the two angles which we have taken from the Table ; let
n be the number of seconds in its excess above 44°11’, then

0002028 : -0001286 :: 60 : n,

‘0001286 60 x 1286 33
0002028~ 2028 7

Therefore the required angle is 44°11’ 38”.

therefore n = 60 x

167. It will not be necessary to give examples for the other
Trigonometrical Functions; the important fact'to be remembered
is that in the first quadrant the tangent and secant ¢ncrease as the
angle increases, and the cotangent and cosecant decrease as the angle
increases ; thus the tangent and secant are treatgd in the same way
as the sine, and the cotangent and cosecant in the same way as the
cosine.

168. The Tables of Trigonometrical Functions which we have
hitherto considered are called Tables of the natural Functions to
distinguish them from other Tables which we now proceed to con-
sider. The Table of sines of angles for example is called a Table of
natural sines ; if we take the logarithms of the sines of all the angles
which have been calculated we form a new Table which is called a
Table of Logarithmic sines. Similarly, we can form a Table of the
logarithms of the cosines of angles, and a Table of the logarithms
of the tangents of angles, and 80 on ; these Tables are called respect-
ively Tables of logarithmic cosines, Tables of logarithmic tangents,
and so on.

169. The great advantage which we obtain from these Loga-
rithmi¢ Tables is that calculations are much abbreviated with their
- asgistance ; this is especially the case, as we shall see hereafter, in
what is called the solution of T'riangles. 'We have stated as suffi-
ciently obvious that these Logarithmic Tables may be calculated by
taking the logarithms of the values of the Trigonometrical Functions
which have been already tabulated; it will be shewn however in
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the higher parts of the subject that the Logarithmic Tables can be
calculated ¢ndependently, that is, without the use of the Tables of
the natural Functions. 'We proceed now to exemplify the use of
the Tables of Logarithmic Functions.

170. Since the sine of an angle is never greater than unity
the logarithm of the sine will never be a positive quantity; also
the same remark is true for the cosine. The logarithm of the
tangent of an angle will be negative if the angle be less than
45° and the logarithm of the cotangent of an angle will be
negative if the angle be greater than 45°. In order to avoid
the occurrence of negative quantities in the Tables it is found
convenient to add 10 to the logarithm of every Trigomometrical
Function before registering it in the Tables; the logarithm so
increased is called the Tabular logarithm and is usually denoted
by the letter L. Thus LsinAd means the Tabular logarithm
of the sine of 4, and it is equal to the real logarithm of the -
sine of A increased by ten. Of course in calculations we shall
have to remember and to allow for this ihcrease of the real loga-
rithms; this will be seen when we come to the solution of T'ri-
angles. In what follows we shall exemplify the use of the Tables
of Logarithmic Funetions,

171, To find the tabular loga/nthmw sine of a given angle.

If the given angle be one which is contained in the Table
of the logarithmic sines the required result is furnished imme-
diately by the Table; we proceed then to the case when the given
angle lies between two which are contained in the Table. For
example, required the tabular logarithmic sine of 44°35 25”7,
having given from the Table

L sin 44° 35" 30" = 98463678
L sin 44° 35" 20" = 9-8463464
difference = ‘0000214

The required tabular logarithmic sine lies of course between the
two which we have taken from the Table; let « denote its excess

82



116 . USE OF LOGARITHMIC

above the tabular logarithmic sine of 44°35’20”; then Aby the
principle of proportional parts
10 : 57 :: -0000214 : «,

thus o= 51—3 x ‘0000214 = -0000122.

Therefore L sin 44° 35’ 25”7 = 9-8463464 + 0000122 = 9-8463586.

172. To find the angle which corresponds to a given tabular
logarithmic sine.

If the given tabular logarithmic sine be found in the Table
the required angle is furnished immediately by the Table; we
proceed then to the case when the given tabular logarithmic sine
lies between two which are contained in the Table. For example,
required the angle which has for its tabular logarithmic sine
9-8432894, having given from the Table

L sin 44°11°40” =9-8432923
L sin 44°11" 30” = 9-8432707
difference= -0000216

The excess of the given tabular logarithmic sine above that of
44°11’ 30" is 9-8432894 — 9-8432707, that is, ‘0000187. The re-
quired angle of course lies between the two angles which we have
taken from the Table; let » be the number of seconds in its excess
above 44° 11’ 30”, then

0000216 : ‘0000187 :: 10 : =,

0000187 _ 10 x 187
0000216 ~ 216

Therefore the required angle is 44° 11’ 38”7,

therefore n=10 =87,

173. To find the tabular logarithmic cosine of a given angle.

If the given angle be one which is contained in the Table of the
logarithmic cosines the required result is furnished immediately by
the Table; we proceed then to the case when the given angle lies

—d
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between two which are contained in the Table. For example, re-
quired the tabular logarithmic cosine of 44° 35" 25” *T, having given
from the Table
L cos 44° 35’ 207 =9-8525789
L cos 44° 35" 30” = 98525582
difference = 0000207
The required tabular logarithmic cosine lies of course between
the two which we have taken from the Table, and is less than the
tabular logarithmic cosine of 44° 35’ 20”; let = denote ius defect
below the latter; then

10 : 5-7 :: -0000207 : =,

thus = =% % +0000207 = -0000118.

Therefore L cos 44° 35° 25”7 =9-8525789 —-0000118 = 9-8525671.

174. To find the angle which corresponds to a given tabular
logarithmic cosine.

If the given tabular logarithmic cosine be found in the Table
the required angle is furnished immediately by the Table; we
proceed then to the case when the given tabular logarithmic cosine
lies between two which are contained in the Table. For example,
required the angle which has for its tabular logarithmic cosine
9-8555086, having given from the Table

L cos 44°11’ 30" = 9-8555264
L cos 44° 11’ 40” = 9-8555060
difference = 0000204

The given tabular logarithmic cosine falls short of that of
44° 11’ 30” by 9-8555264 — 9-8555086, that is, 0000178. The
required angle of course lies between the two angles which we
have taken from the Table; let # be the number of seconds in its
excess above 44° 11°30”; then .

0000204 : -0000178 :: 10 : =,
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‘0000178 1780
therefore n=10x 0000204 = 204 = 87.

| Therefore the required angle is 44° 11’ 38”-T.

175. Tt will not be necessary to give examples for the other
Trigonometrical Functions ; the important fact to be remembered
is that in the first quadrant the tabular logarithms of the tangent
and secant increase as the angle increases, and the tabular logarithms
of the cotangent and cosecant decrease as the angle increases; thus
the tangent and secant are treated in the same way as the sine, and
the cotangent and cosecant in the same way as the cosine.

EXAMPLES.

1. Given log 12440 = 40948204,
log 12441 =4-0948553,
find log 12440-35.
2. . Given log 1:0686 = 10288152,
log 1-0687 = -0288558,
find the number of which the logarithm is -0288355.
3. Given log 23456 = 4:3702540,
‘ log 23457 =4-3702725, ,
form a table of proportional parts for the intermediate numbers,
and find log 2345638. '
4. Find the number whose logarithm is — (1-8753145), having
given
log 1-3325 =+1246672, log 1-:3326 =-1246998.

5. Given log 3-855 =-5860244,
: log 3-8551 = 5860356,
find log (00385504) 1.
6. Given log 24 =13802112,

log 4-8989 = 6900986,
log 48990 = 6901074,
find (24)} to six places of decimals.
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7. Given log 14271 =4-1544544,
log 20313 = 4-3077741,
log 20314 =4-3077954,

find (142-71)%.

8 Given log = +8450980,
log 58751 = 47690153,
log 58752 = 4-7690227,

find (-07)* to seven significant figures.

9. Given log2=-3010300, log5743491="-7591760,
find the fifth root of ‘0625.

10. Given log2-7=-4313638, log 5-172818 = 7137272,
find the value of 27 %,

11. Given log 71968 =4-8571394, diff. for 1 =-0000060,
find the value of ,%(0719686) to seven places of decimals.

12. Given log103 =2:0128372, log 7440942 =6-871628,
find (1-03)7".
13. Find the value of 64 {1 —(1:05)~*}, having given
log 105 =2-0211893, log 37689 =4-5762140.

14 Find approximately 5V%, having given
log 2= -301030, log1-562944="-193943,
log 349485 = 5543428, log 3655  =-562887,
log 36566  =-563006.
15. Having given
log 12=1-0791812, log 1-257915=-0996512,
log 1-121568 = +0498256, find the value of
(1-44)7°— (1-44)7"

16. Having given

log 105=2-0211893," log 5303214 = 6-7245391,
log 3768894 = 6576214, find the value of

s ooy~ oo
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17. Given sin 47° =-7313537,
sin 48° = 7431448,
find sin 47°1".
18. Given sin 7°17' =1267761,"
sin 7° 18" =-12706486,
find sin 7°17° 25",
19. Given Lsin17°1’=9-4663483,
' Lsinl7° =9-4659353,
find Lsin17°0"12",
20. Given L sin 26° 24’ = 9:6480038,
+~  Lsin26°25’'=9-6482582,
find : Lsin 26° 24712,
21. Given Lcot72°15" =9-5052891,
L oot 72° 16’ = 9-5048538,
find L cot 72°15' 35",

22. Given L cot 81° 46 '=9-1604569, diff. for 10”=-0001486,
find the angle whose L cot is 9-1603493.

23. Given L cos 20°35’20” =9-9713351, difference for 10”
= ‘0000079, find the angle whose L cos is 9-9713383.

24. Given L cos 34°24’=99165137,  diff. for 1’=-0000865,
find L cos 34° 24" 26", and also the angle whose I cos is 9:9165646.

25. Given Lsin 37°19"=9-7826301, diff. for 1’=-0001 657,
' L cos 3719'=9-9005294, diff. for 1'=-0000963,

find Lsec 37°19° 47", and L cot 37° 19" 47",

26. Given L sin 32°18'=9-7278277, diff for 1’=-0001998,
Lcos 32°18'=9-9269913, diff for 1'=-0000799,

find L sine, L cosine, and L tangent of 32° 1824™6,
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. XII. THEORY OF PROPORTIONAL PARTS.

176. 'We shall now investigate the principle of proportional
parts, the truth of which was assumed throughout the preceding
chapter. . The logarithms in the present chapter are supposed to be
logarithms to the base 10; and we will suppose that the Table of
logarithms is calculated to seven places of decimals, and that it con-
tains the logarithms of every whole number from 1 to 100000.

177.  To shew that the change of the logarithm is approwimately
proportional to the change of the number.
''We know that log(n+d)—logn=log£j;—d=log (1 + g) ,

d & &
and by Art. 148, log(l+ ) M )
where p is the modulus, so that p=-43429448......

Suppose that # is an integer containing five figures so that n is
not less than 10000 and suppose that d is not greater than unity.

Then :— ol is less than i (l 5000 ,and a fortior: less than 090000003 ;
'3‘% is less than one ten-thousandth part of this, and so on.

Hence at least as far as seven places of decimals we have

log(n+d)—logn=’—"—:.

This equation establishes the required result; for it shews that
- if the number be changed from = to = + d the corresponding change
in the logarithm is approximately ';j , that is, the change of the
logarithm is approximately proportional to the change of the number.

178. The principle of proportional parts is thus shewn to hold
in the case of the logarithms of numbers to a sufficient degree of
accuracy for practical use. For when we wish to find the loga-
rithm of a given number we can suppose the decimal point in the
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number placed after the fifth figure, so that the number is thus
made to lie between two which differ by unity and which are beth
contained in the Table; and we have shewn that as far as seven
places of decimals the change of the logarithm is proportional to
the change of the number. Then we can if necessary change the
position of the decimal point and make the corresponding change
in the characteristic of the logarithm; and thus we finally obtain
the logarithm of the original given number. Similarly we may
proceed if we want to find the number which corresponds to a
given logarithm lying between two in the Table.

179. We will now shew how the result of Art. 177 is applied
in practice. 'We have

log(n+d)-logn="—:—l,
also . log(n+1)—logp=£=83uppose, '
thus log (n+ d)=logn +d3.

]

Now 8 being the difference of two known logarithms is furnished
immediately by the Table; and to obtain the logarithm of (n +d)
we multiply this known quantity 8 by the given fraction d and add
the product to the logarithm of n. This is the rule which was
used in the preceding chapter, Art. 153, in order to find the
logarithm of a given number.

Again, suppose we require the number which corresponds to a
given logarithm. Let n and n+1 be integers between which the
required number lies, and denote the required number by n + d.
Then log (n +d)—1logn is known; call it , and let 8 denote the

known quantity log(n +1)—logn; thus dd=z; therefore d = g .
This is the rule which was used in the preceding chapter, Art. 157.
180. 'We shall now proceed to examine how far the principle of

_ proportional parts holds in the case of the natural Trigonometrical
Functions; this we shall do by considering these Functions sepa-
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rately. 'We shall suppose throughout this chapter that the angles
which occur are positive angles not exceeding a right angle; this is
sufficient because it has been shewn that any Trigonometrical
Function of any angle is equal to the same Function of some posi-
tive angle not exceeding a right angle; see Art. 55.

181. To prm that in general the change of the sine of an
angle is approzimately proportional to the change of the angle.
‘We have sin (0 + %) —sin 0 =sin  cos 6 —sin 0 (1 —cos h)

1—cosh
sin &

=sinkcos€(l—tan0

. k
=gin A cos 6 (l—m9hn§).

Let us now suppose that % is the circular measure of a very
small angle so that sin 4 = A approximately; thus, approximately,

ain(0+h)_sino‘=hcoao(1—m om%);

let us also suppose that 6 is not very nearly equal to g so that

tan 6 is not very large, and thus tan @ tang- may be neglected.

We have then, approximately,
sin (6 + &) —sin 6="h cos 6,
and this establishes the proposition.
Similarly, sin (f — A)—sin 6 =— A cos § approximately.

182. We may however requiré to know more exactly the
amount of error to which we are liable in using the result of the
preceding article; this point we will now examine. The approx-
imate value of sin (6 + &) -sin6, is & cosf, while the exact value is
sinkcos@ — (1 — cosk)sin @; thus to obtain the approximate value we
change sin into % in the first term of the exact value, and we neglect
the second term of the exact value. First then consider the error
produced by writing 4 for sinh. The circular measure of an angle
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”

180° and by Art. 130 sin & cannot differ from A by

of one degree is

3
so much as h—', so that it may be shewn that for an angle of one

degree the sine cannot differ from the circular measure by so much
as “0000001. Hence if our calculations extend to only seven
places of decimals no error will be introduced by changing sin &
into % even for an angle of one degree, and & fortiori no error will
be introduced by the change if we restrict 4 to be not greater than
the circular measure of an angle of one minute. Next consider
the error produced by neglecting the term sin (1 —cos %), that is,

2 2
less than h the value of the term neglected is less tha.nh ; and if

2sinf sin’]—?'. Since sinf is never greater than unity and sin h is

2
2 2
hl
h be the circular measure of an angle of one minute P is less than

‘0000001. Hence if our calculations extend to only seven places
of decimals no error will be introduced by neglecting the term
sin @ (1 — cos k) if we restrict % to be not greater than the circular
measure of an angle of one minute.

Therefore if we have a Table of natural sines calculated for
every minute to seven places of decimals, no error will be intro-
duced by our calculating to seven places of decimals the sine of an
angle which lies between two in the Table from the formula

gin (0 + ) — sinf = h cosf.

183. 'We will now shew how this result is applied in practice.
Suppose that we have a Table of natural sines calculated for every
minute, and that we require the sine of an angle which lies be-
tween two in the Table. Let % be the circular measure of an angle
of one minute ; let § and 6 + % be the circular measures of the angles
in the Table between which the given angle lies, and let 6 + 4 be
the circular measure of the given angle. Then

sin (9 + %) —sin 6= oos § = & suppose,
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sin (0-+ ) sin 0= hooa § = 5;

thus sm(0+h)_.sm0+ 8=81n0+60
where 2 is the number of seconds in the angle of which 4 is the
circnlar measure. Now 8 is the difference between two consecutive
sines in the Table, and is therefore furnished immediately by the

Table, and we must multiply this known quantity by = and add

the result to sin 6 in order to obtain sin (6 + A). Thxs is the rule
which was used'in the preceding chapter, Art. 163.

Again suppose that we require the angle which corresponds to
a given natural sine. Let % be the circular measure of an angle of
one minute;  and 0+ % the circular measures of angles in the
Table between which the required angle must lie, and let 6 + % be
the circular measure of the required angle. Then sin (6 +A)—sin 0
is known; call it #, and let § denote the known quantity
sin (0 + k) —sin 0; therefore ’—;—8—;6, therefore A —8 ; let & be the
number of seoonds in the angle of which the cxrcular measure is A,

t.hen 6(;:”. This is the rule which was used
in the preceding chapter, Art. 164.

184. When 0 is nearly g, since cos @ is then very small, the N

term /4 cos @ will be very small if A be the circular measure of a
small angle. Thus the difference between the natural sines of two
angles, each of which is nearly equal to a right angle, is very small;
this is expressed by saying that the differences in the sines of con-
secutive angles are nearly insensible when the angles are nearly
equal to a right angle. There is also another point to be noticed
in this case; we have :

sin (9 + A) — sin 0 = sin k cos 6 — (1 — cos &) sin 0;
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the ratio of the second term to the first is numerically

gin 6 (1 —cos k)

cos@sink °’

‘that is, tan @ ta.ng , and when 6 is nearly equal to g this ratio

will be a sensible quantity unless g be extremely small. Thus the
second term ought not to be rejected in comparison with the firss
term unless g be extremely small. This is expressed by saying
that the differences in the sines of consecutive angles are irregular
when the angles are nearly equal to a right angle. In the present
case this trregularity is not of much importance on account of the
accompanying insensibility.
185. 'We have shewn that, approximately,
sin (6 +A)—sin G=hcosb;

change 6 into g— #, thus
sin g—'0'+h)—sin(g—0')=hoos 1—;-—0’),
that is, cos (6 —h)—cos@ =hsinf';
and by changing the sign of 4 .
cos (¢ + k) —cos ¢ =—hsind.

It is convenient to deduce this formula from that already
proved, because we thus know, without a new investigation, the
amount of error to which we are liable in using it; it may how-
ever be proved independently, as we will pow shew.

186. To prove that in general the change of the cosine of an
angle 8 approximately proportional to the change of the angle.

‘We have
_oos(ﬂ.—h)—oqgﬂ:ainhsinO-oosO(l—cosh)



THEORY OF PROPORTIONAL PARTS. 127

=sinhsin0(l —cot01_008h)

sin A
=ainksin0(l —wtomng).

Let us now suppose that 4 is the circular measure of a very
small angle, so that sin & = A approximately ; thus, approximately,

cos (0 —A) - cosG:bsinG(l—cotOtang);
let us also suppose that 6 is not very small, so that cot 6 is not very

]a.rgg, and thus cot @ tan g may be neglected. We have then,
approximately,

cos (0 — k) — cos =F sin 6,
and by changing the sign of &,

cos (0 + k) —cos9 =—hsin 0;
and this establishes the proposition.

187.  From the result of the preceding article, we can deduce

the rule used in Arts. 165, 166 of the preceding chapter; the
method is the same as that which we have already given in Art.

183. The only peculiarity to notice is that the cosine diminishes
as the angle increases.

And by proceeding as in Art. 184 we see that the differences
in the cosines of consecutive angles are nearly insensible and are
also trregular when the angles are very small.

188. To prove that in general the change of the tangent of an
angle i8 approximately proportional to the change of the angle.

_sin(8+h) _sind
‘We have tan(0+h)—tan0—(m—)—mo

_sin(f+h)cosf—cos(§+A)sind sin(6+h—6) _ sink
- 00s (0 + &) cos 0 " cos (0 +A)cos  cos (0 +h)cosd
sinA tanh

“cos*0 (cosh—sinhtand) cos*f(l—tanftanh)
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Let us now suppose that 4 is so small that we may put % for -
tank, and also that 6 is not nearly equal to % 80 that tan 6 tan 4

2
may be neglected. ‘We have then, approximately,
‘ tan (6-+) —tan 0= s~ hsec’s,

cos’d
also by changing the sign of 4
tan (0 — &) — tan 0 ="— k sec*6;
this establishes the proposition.

'189. From the result of the preceding article we obtain the
same rule for the tangent as we obtained in Art. 183 for the sine.
‘We will now proceed to examine the amount of error to which
we are liable in using the approximate formula of the preceding
article. We have

tanh
cos’d (1 —tan 6 tan &)
=tanAsec’d (1 + tand tan & + tan®d tan®h + ...);

thus if we take only the first term tan A sec’d we neglect a series
of terms beginning with tan®h sec’d tand, that is approximately
A*(1 +tan*6) tanf. Now if we have a table of natural tangents
calculated for every minute and we wish to find the natural
tangents of intermediate angles the greatest value of % is the eir-

=tanhsec’d (1 — tanf tan )"

cular measure of one minute, that is, W)Z:(—GT)’ or ‘0003 approxi-

mately. Hence the numerical value of the greatest error is not
less than ('0003)’ (1 + tan*6) tan 6, and therefore even if § be not

greater t}mn - We are liable to an error in the seventh place

of declmals. If however, we have a table calculated for every

ten seconds the greatest value of A is the circular measure of
. . ™ . . s

ten seconds, that is, 80%60x6 " 00005 approximately; in

this case we shall be free from error in the seventh place of
decimals until tan § is about as great as 6; the table shews that
tan 80° is rather less than 6.
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190. Since tan (0 +h)—tan O=~rhsec'd approximately, and
sec @ is never less than unity, the differences of consecutive tan-
gents are never insensible; but as we have shewn in the preceding
article, the differences are irregular when the angles are nearly
right angles. '

191. 'We have shewn that approximately
tan (6 + k) — tan 6 = h sec*d; (:7

change 6 into ;f— ¢, thus

tan (%— 0'+h) — tan (-12{-0') =hsec’(§—0’),
that is cot (6/ ~ k) — cot ¢ =k cosec® ¢,
and by changing the sign of A
cot (6 + k) — cot & =— & cosec* €. _
. This may be proved independently, as we will now shew.

192. To prove that in general the change of the cotangent of
an angle is approximately proportional to the change of the angle.

cos (§—h) cos@

We have ~  cot (0 —A)—cot @ =

o (0—F) sad

_‘cos (9 —h)sin 6—cosfsin (§—A) _ sin(f—6+4)

B sin (6 — %) sin 6 “sin(0—4)sing
sin b sin & ‘

= sin (G—k)sin(f: sin® 6 (cos & — sin A cot 6)

_ tan )
"~ sin®0(1 —tanhcot§) " - ,
Let us now suppose that & is so small, that we may put £ for
tan h, and also that 6 is not very small, so that cot 6 tan % may be
neglected. We have then approximately

cot (0 — k) —cot 6 =

e h cosec’ 6,
also by changing the sign of & .

cot (6 + k) — cot =~k cosec’d;
this establishes the proposition.

T. T, 9



130 THEORY OF PROPORTIONAL PARTS.

193. To prove that in general the change of the secamt of an
angle s proportional to the change of the angle. .

1 1
cos (6+h) cosf
_cosf—cos(f+h) sinhsind+ (1—cosh)cosd
" cos@cos(+h)  cos'0(cos h—sink tan )

Wehave  sec (0 +A)—sech=

tan % sin ¢ (1 + tangcot 0)
cos'd(l —tan O tank) °

Let us now suppose that A is so small that we may put A for
tan A, and also that @ is neither very small nor very nearly equal

to;,sothat tan 6 tan A and cot Omng may be neglected. We

have then a.pproiimately
hsinf

— T 1 2
P T / sin 6 sec’ 6,

sec (0 +A) —sec =
also by changing the sign of A
sec (0 — h) —sec = —/hsin Osec’d;
this establishes the proposition.
194. 'We have shewn that approximately
sec (0 + h)—sec 6 =k sin 0 sec’d;
cha.ngeOintog—O', thus :
l T_ &) =hein(— T
sec §—0’+h>—sec(§—9’)—hsm(2 O')sec 3 0’),
that is cosec (¢ — k) — cosec &= h cos & cosec'd,
and by changing the sign of 4

cosec (6 +h) — cosec &/ =— h cos & cosec'd.
This may also be proved independently.

195. The amount of ervor to which we are liable in using the
approximate formuls of the preceding two articles may be in-
vestigated as in Art. 189. It will be seen that the differences of
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consecutive secants are insensible and irregular when the angles
are very small, and they are trregular when the angles are nearly
right angles; the differences of consecutive cosecants are ¢rreqular
when the angles are small, and tnsensible and ¢rregular when the
angles are nearly right angles.

We will now proceed to examine how far the principle of pro-
portional parts holds in the case of the Logarithmic Trigonometrical
Functions.

196. To prove that in general the change of the tabular loga-
rithmic sine of an angle is appreximately proportional to the change
of the angle.

‘We have approximately sin (§ + &) =sin8 + £ cosé,

therefore m____n 6+ 1) 1 +heotf;
gin §
sin (0 +4h)
therefore log sin (0 + &) — log sin 6 =lo og — g —=log (1 + A cot 6),

and log (1 + % cot 6) = pk cot 6 appronmately (Art 148), where u is
the modulus; thus approximately
log sin (6 + A) — log sin @ = pk cot 6,
also by changing the sign of A
log sin (0 — A) — log sin 6 = — ph cot 6.
If L stand for tabular logarithm, we have
L gin (6 + ) =10 + log sin (6 + &),
Lsin6=10+logsin b ;
therefore L sin (6= k) — L sin 0 == ph cot 6.
This establishes the proposition.

197. 'We will now shew that in general the principle of pro-
portional parts holds approximately in the case of the other
tabular logarithmic functions, and then we will consider the
amount of error to which we are liable in using the approximate
formulee.

198. 'We have shewn that approximately
L sin (0 + ) — L sin 6 = ph cot 6,
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change 0 into 7—'— ¢, thus

Lsin 0’+h) Lsm(——ﬂ) phcot 0’)

that is Lcoa(0’ k) —Lcos ¢ = ph tan ¢,
and by changing the sign of &
L cos (¢ + k) — L cos 0 =— ph tan6.
This proves the principle in the case of the tabular logarithmic
cosines.
199. We have shewn that approximately
log sin (0 + &) — log sin 6 = ph cot 0,
and ~ logcos(6+h)—logcosf=—phtand;
then by subtraction
log sin (8 + k) — log cos (8 + k) —{logsin 6—log cos 6} = ph(cot 6+ tan 6),
that is log tan (6 + k)—logtanf = :;'0,

2uh
therefore L tan (0 +A)— L tan 6 = T
and by phangmg the sign of A
2ph
| .Ltan(e—h)—LtanO——m.
This proves the principle in the case of the tabular logarithmic

tangenty. By changing 6 into %— & we obtain -

' uh

- Lcot(ﬁ'*h)—LcotO’_*éﬁl_za”

this proves the principle in the case of the tabular logarithmic
cotangents. ’

200. We have shewn that approximately
log sin (0+h)~logsin0=phcot0,
1 1
therefore log @ h) log feny ik ph cot6,
that is log cosec (6 + k) — log cosec 6 = — ph cot 0,
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therefore L cosec ( + k) — L cosecd =— ph cot 6,
also by changing the sign of A
L cosec (§ — k) — L cosec 6 = ph cot 6;
this proves the principle in the case of the tabular loganthmlc

cosecants. By changing 6 into ; 3 T — ¢, we obtain

L sec (0 = h)—Lsec 0 ==phtanf;
this “proves the principle in' the case of the tabular logarithmic
secants. '

201. From the results of Arts. 196—200 we obtain the rules
which were exemplified in Arts. 171—174. It will be observed
that we have deduced the approximate formule for all the other
logurithmic functions from that of the logarithmic sine; thus if we
investigate the amount of error to which we are liable in the case
of the logarithmic sine, we shall know the amount of error for all
the other logarithmic functions. The approximate formule how-
ever for the other logarithmic functions may be obtained inde-
pendently, and we will for example give the investigations for the
logarithmic cosine and the logarithmic tangent.

202. To prove that in general the change of the tabular loga-
rithmic cosine of an angle is apprommately proportional to the
change of the angle.

'We have approximately cos (0 —k) = cos 0 + ksin 6,

cos (0 —A)

therefore ° —— 7 =1+htané,
cos 6

therefore log cos (f— A) —log cos 0 = logcmg O-F)_ =log (1 +Atand),
and log (1 + A tan6) = pk tané approxxmately (Art. 148),
therefore  log cos (6 —A4) — log cos 6 = ph tan @ approximately,
therefore L cos (6 — k) — L cos 0 = h tan 6, '

and by changing the sign of 4
L cos (0 +h)— Lcos  =—ph tan 6.
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203. To prave that-in general.the chamge of the tabular loga-
rithmic tangent of an angle is approwimately proportional to:the
change of the amgle.

‘We hgve appreximately tan (§-+h) = tan 8+ ksec'd,

tan (0+A4). .  hsec’d- .
tand =1+ ton 0 =1+ 2k cosec 26,

therefore log tan (8 +4) —log tan 6 =log (1 + 24 cosec 26)
= 2ph cosec 20 approximately,
therefore L tan (6,+4)—.L tan 6 = 2ph cosec 26,
and,by. changing the sign of A, '
' Dtan (- F)— L'tan 6 =~ 2ph cosec 20.

therefore

204. We will now proceed to consider the amount of error- to-
which we are liable ih using the approximate formula:
Z sin (0 + k) — Lgin 0 = ph cot 4.,

In-obtaining this formula log: (1 + A cot-6) was taken equal to
ph cot 6, so that the square and: higher powers of. 4. cot.@ were
neglected. But. when 6 is very small cot 0 is very large, and thus
. h*cot*@ may be too large to be neglected ; this case then will
require further examination.

‘We have shewn in Art. 181 that

st (+4) ~sin O =sink cos 6 (1 —tand tan%);

let us suppose /- s0-small that we may write % for sin 4 and g for.

tan g ; thus approximately:

2
sin(o+h)_si_po,=hposo-%‘sino, !

sin (0 + &) 3

K j
therefore G, =1+hcot0-—2-, i
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therefore log sLn_(9_+_h) =log (1 +heotf-=
M. A"\?

s (hoot. 0% 3)"5 (hoota—z,- +...(Art. 148)

=phcot § — —5—(1 +cot'f) +... ;
thus if we omit powers of 4 higher than 4* we have

2
log sin (§ + A) —logsin 0 = uh oot‘o——foosec'&.

If our Table is caleulated to every ten seconds, then the
greatest value of /4 is the.circular measure of ten seconds, that is
about ‘00005 ; and x =4 approximately. Thus the greatest error

. 2
to which we are liable is about L’;’:;f_o. This error will become
sensible in calculations to seven places of decimals if 6 is less than
an angle of 5° for the tables shew that the sine of 5° is less than
4> and .so the cosecant of 5° is greater than 10.

Thus we see that the differences of consecutive loganthmw
sines are trregular when the angles are very small.

When 6 is very nearly a right angle,.cotf is very small
while cosec™§'is not very small; thus the above formula for

log sin (6 + &) — log sih @ sliews that the differences of consecutive .

logarithmic sines are nearly tnsensible when the angles are nearly
equal to a right angle, and that these differences are at the same
time srregular.

From these results we can immediately infer the correspond-
ing results for the logarithms of the other Trigonometrical func-
tions; they will be found enunciated in Art. 206..

205. It appears. from the preceding article, that when: an
angle is small it cannot be accurately determined from its loga-
rithmic sine nor the logarithmic sine from the angle by means of
the common tables, because although the differences of consecntive
logarithmic sines are then sensible, yet they are trregular. To
obviate this difficulty three methods have been proposed.



136 THEORY OF PROPORTIONAL PARTS.

First Method. We may have a Table of logarithmic sines
calculated for every second for the first few degrees of the quadrant ;
in this case the greatest value of A is the circular measure of one

second, and thus ’2 cosec’d becomes small enough to be neglected.

Second Method. This is called Delambré's Method. A Table
is constructed which gives the value of log Eg—? + Lsin 1” for every

second for the first few degrees of the quadrant.

Let 6 be the circular measure of an angle of n seconds, then
0 = nsin 1” approximately (Art. 123),

therefore log su; 4 =log 1%7, =log sin n” — log » —log sin 17,

=Lsinn” —logn— L sin 17,
therefore logn=Lsinn" — (log —— + Lsin 1")
If the angle is known, then the Table gives the value of

log S-lgg + Lsin 17, and log » can be found from a Table of the loga-

rithms of numbers; thus the formula enables us to find Z sin n”.

If the value of L sin n” is given, and we have to find n, we pro-
ceed as follows; since L sinn” is known we can find approximately
the value of the angle, and then from the Table we get the value
of log _Aéf +Z sin 17; then the formula gives us log 7, and we can
find # by an ordinary table of logarithms of numbers. In this
operation we are liable to an error by using an approximate value

of E%f instead of the real value. But it may be inferred from
Chap. 1x. and will be more fully shewn hereafter, that when 6 is
small su; 6 0;, and thus a small error in

[ will not produce any sensible error in our calculations, since

lo g 0 nd will vary far less rapidly than 6.
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Third Method. This is called Maskelyne’s Method. Itmay be
used if Tables such as those described in the other methods are
not accessible.

It may be inferred from Chap. 1x. and will be more fully shewn
hereafter, that when @ is very small we have approximately

sin 6= 0—%, cosf = l—e-

2 )
therefore E;—o =1- % = (l - %')i approximately,
= (cos 6)} approximately,
therefore log sin 6 =log 6 + } log cos 6 approximately.

This formula gives log sin@ at once if 6 be given. If log sinf
be given, we must find an approximate value of 6, and then find
log cos 6 approximately ; then we have

log @ = log sin 6 — } log cos .

Here since cos § varies far less rapidly than 6, we are free from
sensible error by using an approxzimate value of log cos 6 instead of
the real value. A similar formula may be found for the tangent
of a small angle; for

. s o —
tan 6 = sin 0 = (0 - %) (1 - —0— ' approximately,

cos 0
tand /. 6 6
therefore ‘ 5 (1 - 6 (l +—= 2)
"'% [
=1+ ( 1- —) approximately,
therefore log tan 6= log 0 — & log cos 6 approximately.

206. We will now sum up the results of the investiga-
tions of the present chapter.

The principle of proportional parts is applicable to all the
trigonometrical functions natural and logarithmic with certain
exceptions, which occur when the angles are small or nearly equal
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to-a right angle. In thie exceptional cases the differences of
consecutive functions are sometimes wregular orly; sometimes:
they are nearly insensible, and then they are also irregular:

For the natwral fanctions we have the following- exceptional
cases. For the sine the differences are insensible when the-angles:
are nearly right angles; for the cosine they are insensible when
the angles are small. Por the tangent the differences are ir-
regular when the angles are nearly right angles; for the cotangent
they are itregular when the.angles are small. For the.secant:
the differences are insensible when the angles are small, and
irregular when they.: are- nearly. right angles; for the cosecant
the differences are irregular when the angles are small, and in-
sensible. when they are nearly right angles.

Fav- every logarithmic function the principle of: proportional.
parts fails both when the angles. are small and when they are
nearly right angles. For the log sine and.the log cosecant the
differences are irregular when the angles are small, and insensible
when they are nearly right angles. For the log cosine and the
log secant the differences are insensible when the angles are
small, and irregular when they are nearly right angles. For the
log tangent and the log cotangent the differences are irregular
when the angles are small and when they are nearly right angles.

207. In using Trigonometrical Tables-it. is necessary to avoid
as much as possible the cases in which the principle of pro-
portional parts does not hold. In other words, we must endeavour
to use a Table such that the differences of the function corre-
sponding to given small differences of the angle are both sensible
and regular. If the differences of the function are insensible
for a certain number of decimal platces we cannot by any method
determine the value of the function for any intermediate angle,
or perform the converse operation, so long as wo are restricted
to the certain' number- of> decimal. places. If’ the differemees of
the function are irregular we cannot determine.the value.of.the
function. for, an intermediate  angle, or- perform the. converse.
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operation, by the principle of proportional parts, thiough we may
by retaining the terms which were neglected in the first approxi-
mation.

208. If we have to. determine an angle from its natural
sine or cosine it will' be advisable to employ the natural sine
if ‘the angle be less than 45° and the natural cosine if the angle
be greater than 45°° For the differences of comsecutive sines
vary approximately as the cosine of the angle, and the differences
of consecutive ocosines vary approximately as the sine of the
angle ;- thus. the differences of conseeutive sines are greater. or
less than: the differences of consecutive cosines aceording as the
angle is less or greater than 45°. A similar remark holds for
the logarithmic sine and cosine.

209. The, stndent who is aoquainted’ with the elements of
the Differential Calculus will see that all the results of the present
chapter may be obtained from Taylor's Theorem ; and. thus these
results may be easily retained in the.memory, or at least readily
recovered when required. For example, consider the natural
sine; we have by Taylor's Theorem

L]
sin 9+ H) = sin 6+ h oo - = sin (6.4 MA),

where A is some proper fraction. This formula shews that if
we.put,
sin (0 + h)=s8in 8 + hcos §
L
the error is less than h—g Moreover we see that when 6 is small the
principle of proportional parts is especially applieable, for then

L]
the term -’% gin (6 + M) is extremely small in comparison with
b cos@; and,on the other hand, when 4.is nmly,g the principle

2.
is not so appropriate, because then l; sin (0 + M) may be sensible

in comparison with A cos 6.
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Again, by Taylor'’s Theorem, we have
. 2
log sin (9 + &) = log sin 6 + 00t 6 — - cosec? (6 + M),

where p is the modulus and A some proper fraction. This equa-
tion shews that the principle of proportional parts is in general
applicable for the logarithmic sine, but that the differences of
consecutive logarithmic sines are irregular when the angles are
small, and insensible and irregular when the angles are nearly
right angles.

210. The following application of Taylor’s Theorem will give
a good mode of estimating the amount of error involved in the
principle of proportional parts. Take the logarithmic sine for

example; we have v

log sin (0 + %) =log sin 8 + ph cot (0 + Ak), -
where A is some proper fraction. Thus the approximation
uses cot § instead of cot (6+Ak). The true value in fact of
log sin (8 + &) — log sin § must lie between ph cot§ and wh cot (6 + &),
so that the error is less than uhk {cot § — cot (6 + k)}.

MISCELLANEOUS EXAMPLES.

1. From one of the angles of a rectangle a perpendicular
is drawn to its diagonal, and from the point of their intersection
lines are drawn perpendicular to the sides which contain the
opposite angle; shew that if p ahd p’ be the lengths of the
perpendiculars last drawn, and ¢ the diagonal of the rectangle,

pi -+ p’g — ci. .
2. If two circles whose radii are @ and b touch each other

externally, and if 6 be the angle contained by the two common
ta.ngents to these circles, shew that

_4(a-b) J(ab)
T (@b
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3. Given secasecl +tan atan § =sec B, find tan 8.
4. Find the limit when §=0 of

. 0
smécos29 tan®d

vers 0 cot 6’ and Ofsec20— 1’

5. Shew that cotg- is greater than 1+ cot@ for all values
<of 0 between 0 and .

0 tanf+c-—1 0
6. Iftan'é—m, find tan§.

7. Find the condition necessary that the same value of 6
may satisfy both the equations
a sec*d — b cosf=2a, bcos’d—asecld=2b.
8. Eliminate a and 8 from the equations
" @=sinacos @ sin § + cos acos 6,
b =sin a cos B cos § — cos asin 6,
¢ =sin asin Bsin 6.

9. Eliminate a and 8 from the equations
b+ccosa=ucos (a—0), b+ccosB=ucos(B—-6), a—B=28
and shew that «® — 2uc cosf + ¢’ = b*secd.

10. FEliminate z.from the equations
atan'd—z’ 2a tan 6

tan 2a tan 2o/ tan Ya+tanda 2T
and shew that §=a +d,.or g+.a+a'.

11. Eliminate § and ¢ from the equations
sind +singp=a, cosf+cosp=", cos (6—¢)=c.
12. Eliminate 6 and ¢ from the equations
zcosf+ysinf=a, zcos(6+2¢)—ysin (§ + 2¢)=a,
bsin (6 + ¢)=a sin ¢.
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13. Eliminate z and y from the equations

tanz+tany=a, cotz+coty=06, w+y=ec.

14. Eliminate 6 from the equations

:_: = 20—0—,001—(:;:,%, ?:;:sec'a + cos*d.
15. Eliminate 6 from the equations
(2 +0) tan (0 — ¢) = (a—d) tan (6+ @),
cos 2¢+ b cos 20 =c.

. z* 2
16. Given z,cosO:Z—:coso+b—,oow’,
L y =z
and sin(0+0) sm(§—F) mn2d’
shew that b s.i_ng = l—’;
sind  a

17. Eliminate ¢ from the equations
yéosqS—a:sin p=acos2$, ysing+xcosp=2asin2¢p;
and shew that | (= +,3/)§ +(x— y)g =2d%,
18. Eliminate 6-and ¢ from the equatilons

oosﬂ:sfiﬁ, ws¢=$’—7,
sina sina
cos (6 - ¢) =sin Bsiny;
and shew that tan%a =tan’g + tan’y.
19. Eliminate 6 from the equations

m = cosecf —sinf, n=sec— cosd.
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20. Eliminate 6 from the equatiens

s .
z&in 6 -y cos 0=,/(z* + y°), c'o:’O +sl;9 =w’4l-y"

21. Eliminate § and ¢ from the equations

asin*0+a’ cos’@="5, a'sin’@ +acos?d’ =V,
) .

a tan 0 = a’tan &,
and shew that 1 L l+l,
A a a

22. Given 2*+y'=a'+d", wxy=absing,

cos’d sin®*d 1
= +7=?’

shew that = cot 260 = cot 2a.+ H cosec 2a.

cos & cosQa: eos3a: , shew that

23. If

@, a, Qs
21 Z_2a,—a —ay
Bm §—T.
24 If sinz_sin3z sinbz
: a, a4 @
shew that ' a,—20,+a, _ G=3a,
Qs @,
. cosz _cos(x+0) cos(z+20) cos(x+36)
25. Given o= a = ry T a

a+a, a,+a
shew that Ly P M
a as
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26. If sin? ¢ = 208 22 cos 2d

sin(0—B)cosa+cos(a+9)si£§_0

Sin (= a)cosB * cos ($— F)sina
tan0tana+cos(a—ﬂ)_0
tangtanB  cos (a+8) "

shew that tanf=} (tan 8+ cota), tan¢=4% (tana—cotpB).

27. If

and

2 sinfBsind tan(f-a)
28 If l+z cos(B—6) cotfB °

prove that o= (cot % —2cot ﬁ) (tan % + 2 cot ,3) .

29. Given sin 6 sin p=sina sin B, tan ¢ cos 8= cot ;- , prove
that one of the values of sing is sin %sin B.

30. Given sing=nsinf, tangd=2tand, find the limiting
values of n that these equations may coexist.

'31. Shew by means of a Trigonometrical formula that
if c+y+z=xY2,"
2z 2y 22 2 2y 22

R - R T S el p

32. Find the values of v, , y, # from the equations

sinz siny sinz
: —S=—; ©+y+2=2m
sine sind sinec

33. Find the limit of (cos az)**°"#* when 2 is zero.
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34. From a table of natural tangents which goes to 7 places
of decimals, shew that an angle may be determined within about
z3gth part of a second when the angle is nearly 60°.

35. When an angle is very nearly equal to 64° 36/, shew that
the angle can be determined from its L sine within about Tyth of &
second ; having given log,10.tan 64°36’'=4-8492, and the tables
going to 7 places of decimals,

36. Shew that
(1 - tan'ﬁ) (1 —tan’%,) (1 - tan’g,) ...... ad infi= 2,

37. If A, B, C, be positive angles which satisfy the equation
sin®4 + sin®B +sin*C =1,
prove that A+ B+( is greater than 90°.

38. A circle is drawn touching the tangent and secant of a
given angle a, as well as the corresponding arc; find its radius and
explain the double value. If one value be equal to the radius of

the original circle, shew that a = 1—;

.

XIII. RELATIONS BETWEEN THE SIDES OF A
TRIANGLE AND THE TRIGONOMETRICAL FUNC-
TIONS OF THE ANGLES.

211. We shall now investigate certain relations which hold
between the sides of a triangle and- the Trigonometrical Functions
of its angles; these relations will be applied in the following
chapter to the solution of T'riangles. 'We shall denote the angles
of a triangle by the letters 4, B, C, and the lengths of the sides
respectively opposite to these angles by the letters @, b, ¢; thus a, b, ¢
are numbers expressing the lengths of the sides in terms of some unit
of length such asa foot, or & yard, or a mile. The unit of length
may be whatever we please, but must be the same for all the sides.

T. T. 10
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212. In a right-angled triangle each side
" 43 equal to the product of the hypothenuse into
the cosine of the adjacent angle.
- Let ABC be a triangle having a right angle
at C; then
ﬁ%——c s A, %:cosB; s
therefore b=ccosd, a=ccosB.

C

Since cos 4=sin B and cos B=sin 4, we may also enunciate
the proposition thus—in a right-angled triangle each side is equal
to the product of the hypothenuse into the sine of the opposite angle.

213. In any right-angled triangle each side is equal to the pro-
duct of the tangent of the opposite angle into the other side.

From the figure of the preceding article we have

BC AC
tan 4 = L tan B = B0’
therefore a=btan 4, b=atanB.

Since tan 4 =cot B and tan B=cot 4, we may also enunciate
the proposition thus— any right-angled triangle each side s
equal to the product of the cotangent of the adjacent angle into the
other side.

214. In any triangle the sides are proportwnal to the sines of
the opposite angles.

A
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Let ABC be any triangle, and from 4 draw 4D perpendicular
to the opposite side meeting that side, or that side produced, in D.
If B and C are acufe angles we have from the left-hand figure,

AD=ABsin B, and AD=A(C sin C;

therefore ABsin B=ACsin C,
¢ sinC
therefore = sn B

If the angle C be obtuse we have from the right-hand figure,
AD = ABsin B, and AD = ACsin (180°—C) = ACsin C;

therefore ABsin B=ACsinC,
¢ sinC
therefore 3= smB

If the angle C' be a right angle, we have from the figure of
Art. 212,

AC= ABsin B,
c 1 sin C
therefore =508 " snB"
. s . ¢ _sinC
Thus it is proved that in every case 3 s B
Similar] a_sind and & S0 4
v b sinB ¢ sin(

The results may be written symmetrically thus,

sind sinB sinC

a b ¢

.

215.  To express the cosine of an angle of a triangle in terms
of the sides.

Let 4 BC be a triangle, and suppose C an acute angle. (See the
left-hand figure of the preceding article) Then by Euclid II. 13,
AB*=BC"+ AC"-2B(C.CD,

and CD=A4Ccos C ;
therefore c¢'=a*+b"—2ab cosC.
’ 10—2



148 RELATIONS BETWEEN THE SIDES OF A TRIANGLE AND

Next suppose C-an obfuse angle. (See the right-hand figure of
the preceding article.) Then by Euclid IL 12,
AB*=B(C"+ AC" +2BC.CD,

and CD=AC 008 (180°-C)=—AC cos(,
therefore c¢*=a*+b*— 2abcos C.
2 2
Thus in both cases we have cos C'= %—_-_c’.

Moreover when C is a right angle, o + b* = ¢* and cos C' is zero;
thus the formula just found for cos (' is true whatever the angle
C may be.

b*+cf—a'

Similar]y, cos A= T , Cos B

_+a’ -
T 2a

216. In every triangle each side is equal to the sum of the
product of each of the others into the cosine of the angle which it

makes with the first side. A
From the left-hand figure in Art. 214, we have _Jl
BC=BD+DC=ABcos B+ ACeosC, F—="C
thatis, a=c cosB+bcosC. i

From, the right-hand figure in Art. 214, we have
BC=BD —DC=AB cos B— AC cos (180°-C)
=ABcos B+ AC cos C,
that is, : a=ccosB+bcosC.
Similarly, in every case, we shall have
b=acosC+ccosd,

and 4 ¢c=bcosd +acosB.

217. To express the sine, cosine, and tan@ent of half an angle

of a triangle tn terms of the sides.
We have by Art. 215,
. Bt —al

20c

cosd=
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3 —- _ ]
therefore l—cosd=1 b+ci-a “ (I

2bc %6’
therefore A (a +b—c)(a+ec— b)
4b¢

' Yet 28 =a+b+c so that s is half the sum of the sides of the
triangle; then

a+b-c=a+b+c—-2c=2(s—c),

a+c—b=a+b+c—2b=2(s-'b).

A _@-H6-q) )
be

.4 /(s—8)(s—c)
and ‘ sin 5 = R P

Bic—a® (b+of—a’

Therefore sin’

Also l+cosd=1+

2bc 2c O’
.| (w+b+c)(b+c a) a(s—a)
theretore  cos* 3= Ty -
4 [s(s-a)
and cos 5 = et
.. A 4
From the values of sin 3 and cos 3 we deduce
EDIE)
ta.n 3= 8 (s a)

The positive sign must be given to the radicals which occur in

this article, because %h less than a right angle, and therefore its

sine, cosine, and tangent are all positive,

Similar expressions hold for the sine, cosine, and tangent of
half of each of the other angles. : :
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9218. Sincesin 4=2 singoos % , we obtain

2
=5, Ne(@—a)(s=b)(s—c)

Or we mpy find sin 4 directly from the known value of cos 4;

. e (& +c'—a”)’
) _ 2% +2¢%° + 2a°0* — a* —b' - " |
- 4b°* ’
therefore sind= J+ 250 + 2 —a — b — o
: - 2bc ’

the former expression may be shewn to agree with this By forming
the product of the factors s, s —a, s— b, and s—c.

219. We have proved the formule in Arts. 214—216 inde-
pendently from the figures; we may however observe that it is
easy to deduce those in any two of the articles from those in the
third. Thus we may first establish as in Art. 216, that

a=bcosC+ccos B, b=ccosd+acosC, c=acos B+bcos4d;

multiply the first of these equations by a, the second by b, and the
third by ¢; then add the first two resulting equations and subtract
the third ; thus we obtain
a* + b*— ¢* = 2ab cos C.
Similarly the other two formule of Art. 215 may be deduced.
Then from these results we may proceed as in Arts. 217, 218,
sind 2

and shew that —= = a_b?/a (8—a)(s—05)(s—c),

and that sil;—B and s—n:—o are equal to the same expression.
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sind sinB sinC

Thus « b ¢

Or we may begin by establishing the formule of Art. 214
directly from the figure, and then proceed as follows,

sin A = sin (180°~ 4) =sin (B + C)=sin Bcos C + éosBsinC;

X sin B sin ('
therefore 1=cos( Sp oo B i’
= écosC'+ Ec:osB,-
@ @
therefore a=>bcos C+ ccos B.

Similarly the other two formulz of Art. 216 may be deduced ;
and then those of Art. 217 will follow in the manner shewn in the
beginning of the present article.

220. The reason why an ambiguity of sign occurs in the
formulee for sin % and cos% of Art, 217 may be explained as on
former occasions. It will be observed that we have an expression
for cos 4, and we proceed to deduce expressions for sin%s,nd cos ﬁ ;
and in Art. 96 it has been shewn that in this case we may expect
two values differing only in sign for each of the required quantities.

221. Since the formule in Art. 217 have been strictly demon-

strated, they must of course always furnish real values for sin% ,

oos%, and tan %, if the triangle really exist. That they do so
may be easily verified from a known property of a triangle.

Take for example the formula

.44 (a+b—=c)(a+c-0) .
2 — .
sy = 46 ?
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that this may give a possible value for sm% the expression on the

right hand must be positive and less than unity. It 42 positive,.
because from the fact that two sides of a triangle are greater than
the third, we have a+b — ¢ positive and @ + ¢— b positive. And
the numerator is a®— (¢ — b)°, and this is less than the denominator
provided a* be less than (c—b)*+ 4bc, that is provided a® be less
than (b +¢)’, which is obviously the case.

MISCELLANEOTUS EXAMPLES.

1. The sides of a triangle are ’+x+1, 2z+1,and ' -1 ;
shew that the greatest angle is 120°

in 4
2. IfcosB= ——U’ shew that the triangle is isosceles.

3. In a right-angled triangle of which (' is the right angle,

A b+e
by =g+

A+B a cosd
4. Ifata = 2L
atan A4 + btan B=(a +b) tan 3 shewthatb wosB

5. The angles of a plane triangle form a geometrical pro-

gression of which the common ratio is 4 ; shew that the greatest

side is to the perimeter as 2 sin — to unity.

14

6. If 4, B, (" are the external angles of a triangle, shew that
2bc vers A’ + 2ca vers B’ + 2ab vers (' =(a + b +c¢)"
7. From the angle 4 of any triangle ABC a perpendicular

AD is drawn upon the base, and from D perpendiculars DE, DF
are drawn upon 4B, AC respectively ; shew that

AE .EB.cos*C=AF. FC.cos’B.
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8. Ifa, b, c, be the sides of a triangle and the opposite angles
be 26, 36, 49, shew that tan’f = (ﬁ’cy_ Lo

9. A4BC is a triangle of which C is an obtuse angle; shew
that tan 4 tan B is less than unity.

10. If the sides @, b, ¢ of a triangle be in arithmetical pro-
gression, shew that
4 3

A—C_ . -B 10 L] —
3 ~2sm§,andacos§+cco:s2--?.

11. If D be the middle point of the side BC of a triangle
cot BAD —cot B=2 cot 4.

S

cos

12. If an angle of a triangle be divided into two parts such
that the sines are in the ratio of the sides adjacent to them
respectively, prove that the difference of their cotangents is equal
to the difference of the cotangents of the angles opposite to their
sides. '

13. If the cotangents of the angles of a triangle be in arith-
metical progression, the squares of the sides will also be in arith-
metical progression.

14. Given the vertical angle and the ratio between the base
and altitude of a triangle, find the tangents of the angles into

which the vertical angle is divided by the perpendicular drawn
from it upon the base.

15. If the base of a triangle be divided into three equal parts,
and £, £, ¢, be the tangents of the angles which they subtend at

1 e
the vertex
1 1IN/ 1 1
() Gra)=1(a)
16. If the sines of the angles of a triangle be in arithmetical

progression, the product of the tangents of half the greatest and
half the least is §.
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17. If the side BC of a triangle be bisected in D and 4D be
2bcsind

b~

18. If 4, B, C be the angles of a triangle and cot % , cot

drawn, shew that tan ADB =

t]

B
2

cotg— in arithmetical progression, prove that cot g cot g =3.

19. Straight lines are drawn from the angles 4 and B of a
triangle dividing the angles respectively into parts whose sines are
in the ratio of 1 to n; these lines intersect in D; shew that DC
either bisects the angle C or divides it into parts whose sines are
in the ratio of 1 to »’.

20. If7 be the length of the line which bisects the angle 4 of
a triangle and is terminated by the base, § the angle which it
makes with the base, shew that the perimeter of the triangle
21 cos g—ﬁn 0

sin 6 —sin =
2

21. If 0 and ¢ be the greatest and least angles of a triangle

the sides of which are in arithmetical progression, prove that
4(1 —cos6) (1 —cos¢)=cosf+cos . -

22. From the angular points of a triangle 4 B( lines are drawn
making each the same angle o towards the same parts with the
sides of the triangle taken in order. Shew that these lines will
form another triangle similar to the former, and that the linear
dimensions of the two triangles are in the ratio of

cosa—sina (cot 4 +cot B +cot 0) to 1.

Shew that in any triangle the relations given in the following
examples, from 23 to 40, hold.

23. a(bcosC—ccos B)=b"-¢".

24. a(oos B cos C +cos A) =b (cos 4 cos C + cos B)
=c¢ (cos 4 cos B + cos ().



25.

26.

27.

29.

30.

3L

32.
33.
34.
35,
36.
37.

where

38.

39,
then

40.
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(b+c—a)tan—_gz(c+a—b)tang=(a+b—c)tan_g
bcos B+ ccos C'=acos(B-C).
(@+b)cosC+(b+c)cosd+(c+a)cos B=a+b+ec.
(a®—b°) cot C + (b° ~ ¢) cot 4 + (c* - a”) cot B=0.
(a—b)cot%+(c—a)cot€+(b—c)coté:O.

A B 2¢
l_m§m§=a+b+c'

(@ +b+c)(cos 4 + cos B +cos 0)

=2a cos’i +2b cos’l—?;L 2¢ cos'g.

2 2
sin4  cosAd cosB cosd cosC cos BeosC
7 = + + .
a ab ac be
acos A+bcos B+ ccos C=2a sin Bsin (.
2a sin Bsin ¢

cosd +cos B+cosC=1+ e
a+b+ec

a® —2ab cos (60° + C) = ¢* — 2bc cos (60° + 4).

4 4 B c
oot—‘i——cosec-g .cot§-+cot§..b+c—a.2a.

3¢

. 155

cos* % cos'g cos’;—’Y = 420(2 - cos%) (2 - cosg) (2 - cos-g-'),

A B C
23 =cos §+cos§+cos§.

"B A+B.

The perimeter of any triangle is 2¢ cos % cos 5 sec

2

If ysin®4 + zsin® B =z sin’ B + y sin®C = xsin € + zsin’ 4,

Z:y:z::8n24 :sin 2B :sin 2C.
4

85in——sin£sin gislessthan 1, except when 4 =B=C.

2 22
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XIV.. SOLUTION OF TRIANGLES.

222. Inevery triangle there are six elements, namely, the three
sides and the three angles. The solution of trianglesis the process
by which when the values of a sufficient number of these elements
are given we calculate the values of the remaining elements. It
will appear as we proceed that when three of the elements are given,
the remaining three can be found except when the three angles are
given, and then we cannot determine the lengths of the sides but
only the ratio they bear to each other. We shall have. occasion to
introduce logarithms into our formule, and we shall as before by
the word logarithm or the abbreviation log denote a logarithm to
the base 10; and by the letter L placed before any Trigonometrical
Function, we shall denote the tabular logarithm of that function,
which is formed by adding 10 to the logarithm to the base 10.

‘We shall begin with a right-angled triangle and shall suppose
C the right angle.
223. To solve a right-angled triangle having given the hypo-
thenuse and an acute angle.
Suppose the hypothenuse and the angle 4 given; then -
B=90"-4;

a . .
5 =sin A, therefore @ = ¢sin 4,

therefore loga=1logec +logsin 4 =logc+ Lsin 4 —10;
g =sin B, therefore b=csin B,
therefore log=1logc+ logsin B =1logc+ Lsin B—10;
Thus B, a, and b are determined.

224.  To solve a right-angled triangle hamng gwen the hypothe-
nuse and a side.
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Suppose ¢ and a given; then
sind:g logsin 4 =loga—loge;
therefore - Lsind=10+loga—loge;
this determines 4 ; then B=90"— 4.
And  ¢'=a"+ b therefore §'=c'—a'=(c - a) (c + a),
therefore b=./(c—a)(c+a),
log b =4 log (c—a) + 4log (c +a).
Or we may find b from the formula b = ¢ cos 4.
225. To solve a right-angled triangle having given & side and
an acule a/ngte.

Suppose a and 4 given; then
B=90"-4;

a . a
;=smA, thereforec:m,
loge =loga—logsin A =loga— Lsin4+10;
a a
b—:ta.nA, thereforeb:m,
log b =log a — log tan 4 =log a — L tan 4 + 10.

Thus B, ¢, b are determined.

If a and B are given, then 4=90°—B; thus 4 is known, and
we may find ¢ and b as before.

226. To solve a right-angled triangle having given the two -
sides.
Here a and b are given; then

tan 4= %‘, therefore log tan 4 = log a — log b,
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therefore Ltan A=10+1loga —logbd;
B-90°—4;
a . a
S =sin 4, therefore ¢= nd’
therefore logc=log a — Lsin 4 +10.

Or we may find ¢ from the formula ¢ = ,/(a® + %), but this is not
adapted to logarithmic computation.

227. 'We may remark here that when an angle of a triangle
is determined from its cosine, versed sine, tangent, cotangent or
secant, no uncertainty can exist about the angle, because only one
angle exists less than 180° for which any of these functions has an
assigned value. Bubt when an angle of a triangle is determined
from its sine or cosecant uncertainty may exist, since there are two
angles less than 180° which have a given sine or a given cosecant.
But no uncertainty will exist in the case of a right-angled trinngle,
because each of the other angles of the triangle must be acute.

‘We now proceed to the solution of oblique-angled triangles.

228.  To solve a triangle having given two angles and a side.
Suppose 4 and C the given angles, and b the gi.ven side;
then ‘B=180"-4 -C;

a sind bsin 4
3= B therefore a = “n B’

therefore log a=log b +log sin A—logsin B=log b+ L sin 4 — L sin B;
similarly logc¢=1log b+ L sin C — L sin B.
Thus B, a, and ¢ are determined.

If A and B are the given angles then
C=180°-B-4,

and we may proceed as before to find @ and ¢.
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229. To solve a triangle having given two sides and the in-
cluded angle.

Suppose b and ¢ the given sides and 4 the included angle.

We have ssl:l{:, %:
e AT b
therefore :%%((%—:8 = II:—TZ’ (Art. 88),
and tan {(B + C) tané (180°— 4) = cot 4
therefore tan $(B-C)=-— c j,

therefore log tan 4 (B — C) = log (b — ¢) —log (b + ¢) + log cot 4 ,

therefore Ztan §(B—C)=log(b—c)—log(b+c)+ L coi;—;1 ;
this formula determines § (B-C); and 4 (B + C) is known since
it is 90° — ﬁ thus B and C can be immediately found.

Also 2= im—jt , from which a can be found.
¢ sin(C

230. In finding o from the expression just quoted we should
require three logarithms, namely, those of ¢, sin 4, and sin C; in
the following method we shall only require two new logarithms.

a b c
We have Sud= s B s O’
therefore ad bte

sind smB+sinC’
and sin B+sin O=2sin 3 (B+C)cos§ (B-C) (Art. 83)

=2cosgcos§(B—C'),
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(b+c)sin%

(0+c¢)sin 4 _ .
" cos3(B-C)’

2 cos%cos,}(B—C’)

therefore a=

as the logarithm of & +¢ has been used in the former part of the
solution, we shall only require two new logarithms, namely those of

sin%—a.nd cos 4 (B-0).
231. We can also from the given quantities in the preceding

article determine the third side without previously determining the
other two angles. For we have by Art. 215,

a*=b0"+c"—2bccos 4 ;

and we can transform this formula into another, which is adapted
to logarithmic computation as follows; N

a’=b’+c’—2bc(2cos’%—l),

= (b +¢)’ — 4bc cos’%,

_—_(b+c)’{ (b-f ),cos A}

Now find an angle 0 such that

. A
sin®6 (b ), cos' 5,
thus a’=(b +c)* (1 —sin®6) = (b + ¢)* cos’6,
therefore a= (b +c)cosb,

therefore loga=1log (b+ c)+ log cos@=1log (b +c) + L cosf.— 10 ;
thus @ is determined.

It is usual to give the name of subsidiary angle to an angle
introduced into an expression for the purpose of putting it in the

form of a product of factors. Thus 6 in the preceding investiga-
tion is a subsidiary angle. We are certain that an angle exists
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which has the square of its sine equal to the given expression; for
that expression is positive, and it is less than unity because 4bc is
never greater than (b+c¢)' and cos’g- is less than unity. The

equation for determining 0 gives by taking logarithms
2logsin § =log4 +logd +logec—2log (b+c)+21log cos-{i—,

therefore 2L sin =2 log 2 +log b + log ¢ — 21log (b + c)+2Loos%.

232. The process of Art. 229 is sometimes facilitated by the
use of a subsidiary angle when the logarithms of & and ¢ are
known.

b—c

4
Wehsvetani(B—C):b—”cot—z-.

Now let g= tan @; therefore

b—c tanf-1 x

brc tanf+1
th tan} (B —tan(o ’—') b4
us . }(B-0)= -3)°t3-
Or thus, suppose ¢ less.than b; let c=bcos ¢ ;

b—¢c l-cos¢p . .¢.

therefore bre Tromg” BV
4

thus tan%(B—C):tm'gootg.

233. To solve a ‘triangle having given two sides and the
angle opposite to one of them.

Let a and b be the given sides, and 4 the given angle ;

b

sinB_ =3 thereforesinB:éainA;
a a

in
then snd

now if bm:A is less than unity, two different angles may be

T. T. : 11
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bsin 4

found less than 180° which have for sine, one of these

angles being less than a right angle, and the other greater. If @
be greater than b, then 4 must be greater than B, and therefore
B must be an acute angle; thus only the smaller value is ad-
missible for B. If ¢ be less than b, then either value may be
taken for B. When B is determined, C is known since it is
180°— 4 — B, and then ¢ can be found from

¢ _sin(C

a sind’

Thus if two values are admissible for B we obtain two correspond-
ing values for C and ¢, so that fwo triangles can be found from
the given parts.
bsin 4
a

=1, then B is a right angle, so that only one tri-

angle can be found from the given parts; and if és_lsﬁ is greater

If

than unity, no triangle exists with the given parts.

Thus, when two sides are given and the angle opposite the
less we can generally find two triangles from the given parts, and
this case in the solution of triangles is therefore called the ambigu-
ous case. 'We say that two triangles can be generally found in
order to have regard to the exceptions; for the triangle may be
right angled, and then only one triangle can be found, or the
triangle may be impossible.

234. The ambiguous case may be illustrated by figures.

- q
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o Ct-Boi

Let CAD be the given angle 4, and AC the given side b ; sup-
pose a circle described from C as a centre with radius equal to
a.  The perpendicular from C on 4D is equal to b sin 4 ; there-
fore if @ be greater than b sin 4, the circle will meet the line
4D in two points, which we will denote by B and B. If a be
less than b, then B and B’ are on the same side of 4, as in the
first figure; thus two triangles, namely ABC and ABC, can be
obtained, each having the given parts @, b, 4. If a be greater
than &, then B’ and B are on opposite sides of 4, as in the second
figure ; thus only one triangle, namely C'4.B, can be obtained hav-
ing the given parts @, b, 4; the triangle CAB has an angle CAB’
which is 180°— 4 instead of 4.

If a be equal to b sin A4, the circle fouches the line 4D, and
the two points B and B in the first figure coincide; thus one
triangle is obtained which has a right angle at B.

If @ be less than b sin A the circle does not meet the line 4.D,
and no triangle exists with the given parts a, b, 4.

235. In Art. 233 we first found the angle B, and afterwards
the side ¢; we may however adopt another mode of solution and
begin by finding c. For

@' =b"+c"—2bccos 4;
therefore c*—2bccos 4+b'—a’=0;
by solving this quadratic equation in ¢ we obtain
c=bcos 4= ,/(a’— b*sin’4),
and we shall now discuss the values thus found for c.
11—2
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If a is less than b sin 4, the values of ¢ are impossible, and no
triangle exists with the given parts.

If a is equal to b sin 4, we obtain ¢=bcos 4. If 4 be an
acute angle, ¢ is positive and one triangle exists with the given
parts.. If A be an obtuse angle, ¢ is negative, and this indicates
that the triangle is impossible ; and in fact @ is less than b, since
it is equal to b sin 4, and so 4 cannot be an obtuse angle in
a real triangle.

If @ is greater than b sin 4, then two values occur for ¢, and
these will both be positive if 4 be an acute angle and & cos 4
greater than ,/(a®—3"sin’4); the latter leads to the condition
b*cos* A greater than a'—b"sin®A4, that is, b* greater than a*.
Hence we see as before that there are two triangles if 4 be an
acute angle, and a be greater than b sin 4 and less than &.

236. To solve a triangle having given the three sides.
Let & denote half the sum of the sides ; then by Art. 217,

~/ (a b) (a c) A (a a)

- (s b) (s - c)
tan \/ s(s—a) ’
and similar formule are true for the other half angles.

The formule for the fangents of half the angles will be the
best to use with logarithms, because then we only require the
logarithms of s, 8—a, s—5, and s—¢, in order to find all the
angles ; whereas if we use the formule for the sine or cosine we
shall require in addition the logarithms of the sides.

237. When all the sides of a triangle are given, the angles
may also be found by dividing the triangle into two right-angled
triangles.

Thus, with the left-hand figure of Art. 214, we have

AD*= AB*— BD’, and also = AC* - CD*;
therefore AB*—~ AC*= BD*-CD*,
therefore (A B+ AC) (AB— AC)=(BD +CD)(BD-CD);
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from this we can find BD —CD, and then since BD + C'D is known
we can find BD and CD ; then
BD cDh
B’ “C=4¢
thus B and C are determined.

‘With the right-hand figure of Art. 214 we have as before
(4B+ AC)(AB—-AC)=(BD +CD)(BD-CD);

from this we can find BD+CD, and then since BD-CD is
known we can find BD and CD; then

BD o _CD
cosB:—E, cos (180 —C’)_z—c—,,

thus B and C are determined.

cos B=

238. We have seen in Chap. xir. that the Tables of trigo-
nometrical functions cannot always be used with advantage; this
circumstance guides us in selecting the method of solution of a
triangle to be adopted when more than one method is theoretically
applicable, and leads us to modify the method of solution in some
cases. For example, suppose we have to find 4 from the equation
sin A =n, where n is nearly equal to unity; this is an inconve-
nient equation for determining 4, because the difference of conse-
cutive sines is nearly insensible when the angles are nearly right
angles. We have however

i <45._%) _ \/{1 — cos g9o°-,4)}
- Y- /5

and this formula is free from the objection,
Similarly, if we have to find 4 from the equation

cos A =n,

where x is nearly equal to unity, we may advantageously transform *
the equation thus,
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e O 5

1—-cosd _l—n.
l+cosd 1+n’

A 1-n
therefore ' tan-2- = \/ (m)

or thus,

EXAMPLES.

1. Find the values of the angle 4 having given sin B =25,
a=5,5=24.

2. One side of a triangle is half another and the included
angle is 60°; find the other angles.

3. The sides of a triangle are in the ratio of 2 : /6 : 1 +,/3;
determine the angles.

4. If A=30° =100, a=40, is there any ambiguity ?

5. Having given 4 =18 a=4, b=4+,/(80), solve the
triangle.

6. Having given 4=15° a=4, b=4 +,/(48), solve the
triangle.

7. Ifa, b, 4 be given, and a be less than b, and if ¢, ¢’ be the
two values found for the third side of the triangle, then

¢ —2cc’ cos 24 + ¢* = 4a’ cos® 4.

8. Find the sum of the areas of the two triangles which
satisfy the conditions of the problem in the ambiguous case.

9. IfB, C,and B, C, are the angles of the two triangles
in the ambiguous case, then

sinC,  sinC,

sinB,  sinB,

=2 cos 4.
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10. In the ambiguous case the area of one of the triangles is
n times that of the other; shew that if & be the greater of the

given sides and @ the less, 5; is greater than 1 and less than s 1

11. Ifloga+10=1logd + Lsin 4, can the triangle be ambi-
guous ? ’

12. If 0 be an angle determined from the equation
cos 6= a-b ,
c
prove that in any triangle
4-B (a+b)sinb A+B csinf

T2 T 2 ey P T2 T2y
13. If tan 2,/(ab) sm—- then ¢ = (a — b) sec ¢.

14 Ina triangle'wo in which a=18, b=20, ¢=22, find

L tan%, having given

log 2=-3010300, log 3=-4771213.

15. The sides of a triangle are 32, 40, 66; find the greatest
angle, having given
log 207 = 23159703, log 1073 =3-0305997,
Lcot 66° 18 =9-6424342, diff. for 1" = 0003433.

16. The sides of a triangle are 4, 5, 6; find B, having given
log 2=-3010300,

L cos 27° 53 = 9-9464040, diff. for 1’ = *0000669.

17. Apply the formula oos%1 = ,\/ {:iab%a_)} to find the
greatest angle in a triangle whose sides are 5, 6, 7 feet respect-
ively, having given N

log 6 =-7781513,
L cos 39° 14’ =9-8890644, diff for 60”=0001032.
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18. Two sides of a triangle are 18 and 2 feet respectively,
and the included angle is 55°; find the remaining angles, having
given - -

log 2 =-3010300, L cot 27°30" =10-2835233,
L tan 56°56' = 10-1863769, diff. for 1'=-0002763.

19. Two sides of a triangle are in the ratio of 9 to 7, and the
included angle is 64° 12’; find the other angles, having given

log 2=-3010300, Z tan 57° 54’ =10-2025255,
~ Ltan11°16'=9-2993216, L tan11°17’=9-2999804.

20. If a=70, 6=35, C'=36°52"12", find the remaining
angles, having given
log 3=-4771213, L cot18°26"6”=10-4771213.

21. The ratio of two sides of a triangle is 9 to 7, and the
included angle is 47° 25; find the other angles, having given
log 2 =3010300, Z tan 66°17°30”=10-3573942,
L tan 15° 53’ = 9-4541479, diff. for 1’=-0004797.

22. In a triangle ABC where a =30, b=20, and the con-
tained angle =22°; find the other angles, having given

Lcot11°=107113477, L tan 45°48 = 100121294,
Z tan 45° 49’ = 100123821, log 2 = -3010300.

23. QGiven b=14, ¢c=11, 4=260° shew that B =71°44"29",
having given Z tan11°44’ 29" =9-31774,
log 2=-30103, log 3 =-47712.
24. The sides of a triangle are 7, 8, 9; determine all the
angles, having given
log 2 = 3010300,
L tan 24° 5 40" =9:6505069, L tan 24° 5 50” =9-6505634,
L tan 29°12'20” =9-7474183, Ltan 29° 12' 30" =9-7474677.
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25. In a right-angled triangle the hypothenuse ¢= 6953 and
b=3; find B, having given :
log 3-475=-5409548, log 6-953 =-8421722,
Lsin 44°59° 15" =9-8493902, diff. for 1” = -0000021.
26. Two sides are 80 and 100 feet, and the included angle
60°; find the other angles, having given
log3=-47712, Ltan10°53 36”=9-28432.
27. Two sides of a triangle are 3 and 5 feet, and the included
angle is 120°; find the other angles, having given
log 4-8 =-6812412,
Ltan 8°12'=9-1586706, diff. for 60" = 0008940.
28. . A side of a base of a square pyramid is 200 feet and each
edge is 150 feet; find the slope of each face, having given
log 2=-30103, L tan 26°33 =9-69868,
Z tan 26° 34" = 9-69900.

29. Given 7=13, €=60", log$=4771213, L ocot9"49’

=10-7618797, diff. for 1’=-0007514, find the other angles.

30. If a=2, ¢ - 3, Lsin A =9-5228787, find €; log 3 being
4771213,

31. Shew how to solve a triangle having given the base, the
beight, and the difference of the angles at the base.

32. Shew how to solve a triangle having given the three per-
pendiculars from the angles on the opposite sides,
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XV. ON THE MEASUREMENT OF HEIGHTS
AND DISTANCES.

239. We shall now give a few examples which will shew a
practical application of some of the preceding formulee; we shall
assume that by means of suitable instruments an observer can
measure the angle subtended at his eye by the line joining two
visible objects. For a description of the requisite instruments,
and the method of using them, we must refer the student to
treatises on the instruments used in surveying.

240. T find the height and distance of an inaccessible object
on a horizontal plane.

P

A B C

Let P be the top of an object, and let it be required to find its
height PC, and the distance of the object from a point 4 in the
horizontal plane through C. At 4 observe the angle PAC; then
measure any length 4B directly towards the object, and at B
observe the angle PBC. Then in the triangle A PB the side 4B
is known, and the angle PAB; also the angle PB4 is known,
since it is the supplement of PBC; therefore AP can be found.
Then PC=AP sin PAC, and AC= AP cos PAC; thus the height
PC and the distance AC are determined.

If however it is not convenient to measure the length AB
directly towards the object, we may proceed thus; measure the
length 4B in any direction from 4 ; at 4 observe the angles PAC
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<=

B
and P4B, and at B observe the angle PB4. Then in the triangle
APB the side AB and the angles PAB and PBA are known;

therefore AP can be found. Then, as before, PC = AP sin PAC,
and 4C=A4P cos PAC.

241. To find the distance between two wvisible but tnaccessible
objects.

" Let P and @ be the objects, 4 and B two accessible points
from which both the objects are visible. At 4 observe the angles
PAQ and QA4B, and if 4, B, @, P are not all in the same plane
observe also the angle PAB. At B observe the angles PBA and
@BA. Measure AB. Then in the triangle ABP the side A B and
the angles PAB and PBA are known; thus P4 can be found.
Again, in the triangle 4 B@Q the side AB and the angles Q4B and

Q

A a8

@B4 are known; thus AQ can be found. Lastly, in the triangle
PAQ the sides AP, AQ, and the angle PAQ are known; thus
PQ can be found.
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242. The lengths of the lines which join three points A, B, C
are known; at any point P in the same plane as A, B, C, the
angles APC and BPC are observed : it is required to find the dis-
tance of P from each of the points A, B, C.

Let the angle 4 PC be denoted by o the angle BPC by 8; the
angle PAC by z, and the angle PBC by y; then a and 8 are

.
fa, S,

VAR S

known, and when 2 and y are found the required distances PA,
PB, PC can be found; for in each of the triangles PAC and PBC
two angles and a side will then be known. We will shew how =
and y may be found.

Since the four angles of the quadrilateral PACB are together
equal to four right angles, we have

z+y=2r—a-B-C;

thus the sum of z and y is known.

From the triangle ACP we have
ACsin PAC _bsinz
sin APC~ sina ’

from the triangle BCP we have

PC=

PC B(Csin PBC _asiny
~ " snBPC ~ snf ’
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bginz asiny

therefore sina ~ sinf’

therefore sinz asina
siny RTTY A
asina

Now assume tan¢—-mﬁ, then the value of ¢ can be

found from the Trigonometrical Tables; thus
sin 2

siny

th sing-giny tang-1 _ ( _1_r).
erefore sinz+siny tan¢g +1 tan (¢ 4)’

=tan ¢;

therefore (Art. 88) $i§:+3 (¢ 4)

from the last equation we can determine z—y, since z+y is
known ; thus z and y can be found.

243. It is sometimes important to know what amount of
error will be introduced into one of the calculated parts of a
triangle by reason of any error which may exist in the given parts;
such questions are best treated by the assistance of the Differential
Calculus, but we will give here two simple examples which will
shew how they may sometimes be treated without going beyond
the limits of the present subject.

244. Suppose that the height of a building is détermined by
measuring a horizontal line from its base, and by observing at the
extremity of this line the angular elevation of the top of the build-
ing above the horizon; if a small error be made in observing the
angle, required the error in the estimated height of the building.

Let @ be the length of the measured line, 6 the observed
angle, z the estimated height of the building;
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then . x=atan 0.
Let 6 +% be the true a.hgle, and # + ¢ the true height,
then w+{=atan (0 +4);

by subtraction, £=a{tan (6 + %) — tan 6} = ﬁ%‘m .

If % be small we may put A for sin 4 in the numerator, and
cos § for cos (0 + %) in the denominator ; thus approximately

ah
£= cos* 6’
this gives the error in the height consequent upon an error in the
angle.

The ratio of the error to the estimated height

ah h. 2h
=cos’0Tatano_sinﬂcosézsm20’

thus this ratio is least for a given value of %4 when sin 20 is great-
est, that is, when 20=;—r-.

245. A triangle is solved from the given parts 4, b, ¢; if
there be a small error in 4, find the consequent small error in B.

‘We have for connecting B with the given quantities the
formula

sinB:l-zsinG:gsin(A +B)ceiinnnn, 1).

Now suppose that & denotes the circular measure of the error
made in estimating 4, and % the circular measure of the conse-
quent error in B; then instead of (1), the correct formula is

sin (B -+ K) = 2sin (4 + B+ 5+ B).veroe o (2).
By subtraction,
in(B+%) ~sin B=" {sin (4+ B+h+ R)—sin (4 + B)};

from this equation we have approximately (Art. 181)
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koo B=2 (h+ By con (4 + B)=— (b + Bycos C;

thus | k(cos B+ 2 o0n 0)=— L oo 0;
hsin Beos ¢
therefore % (cos B+——c C)_—W’
therefore k=— M,
sin 4
thus the ratio of Z to 4 is found.
EXAMPLES,

1. From a station B at the base of a mountain its summit 4
is seen at an elevation of 60°; after walking one mile towards the
summit up a plane making an angle of 30° with the horizon to
another station C, the angle BCA is observed to be 135°. Find
the height of the mountain in yards.

2. The altitude of a tower is observed to be 30° at the end of
a horizontal base of 100 yards measured from its foot. Find the
height of the tower.

3. The angular elevation of a tower at a place 4 due south of
it is 30°; and at a place B, due west of 4, and at the distance a
from it, the elevation is 18°; shew that the height of the tower is

a
V(2 +2/5)"
4. A person on a level plain, on which stands a tower sur-
mounted by a spire, observes that when he is a feet distant from
the foot of the tower its top is in a line with that of & mountain.

From a point b feet farther from the tower he finds that the spire
subtends at his eye the same angle as before, and has its top in a
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line with that of the mountain. Shew that if the height of the
tower above the horizontal plane through the observer’s eye be ¢
feet, the height of the mountain above that plane will be

_'a,_bc__a_’ feet.

5. A person wishing to ascertain his distance from an inac-
cesgible object finds three points in the horizontal plane at which
the angular elevation of the summit of the object is the same.
Shew how the distance may be found.

6. A person wishing to ascertain the distances between three
inaccessible objects 4, B, C, places himself in a line with 4 and
B; he then measures the distances along which he must walk in a
direction at right angles to 4B until 4, C and B, C respectively
are in a line with him, and also observes in those positions their
angular bearings; shew how he can find the distances between
4, B, C.

7. Two posts AB and CD are placed at the edge of a river at
a distance AC = 4 B, the height of CD being such that ABand CD
subtend equal angles at Z, a point on the other bank exactly oppo-
site to 4; shew that the square of the breadth of the river is equal
CD"‘B‘ 1B and that 4D and B( subtend equal angles at E.

8. A flag-staff @ feet high stands on the top of a tower b feet
high. At what point on a horizontal plane passing through the
base of the tower must an observer place himself so that the tower
and the flag-staff may subtend equal angles, the height of the eye
being A?

9. A tower situated on a horizontal plane leans towards the
north; at two points due south and distant a, b, respectively from
the base, the angular altitudes of the tower are a and 8. Shew
that if @ be the inclination of the tower, and 4 the perpendicular
height,

to

b-a A b-a

tano:bcota—acotﬁ’ ~ oot B—cota’
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10. An object a feet high placed on the top of a tower sub-
tends an angle y at a place whose horizontal distance from the foot
of the tower is b feet ; determine the height of the tower.

11.  On the bank of a river there is a column 200 feet high
supporting a statue 30 feet high; the statue to an observer on the
opposite bank subtends an equal angle with & man 6 feet high
standing at the base of the eolumn; required the breadth of the

river.

12. The height of a house subtends a right angle at an oppo-
site window, the top being 60° above a horizontal line; find the
height, taking the breadth of the street 30 feet.

13. Two chimneys are of equal height. A person standing
between them in the line joining their bases observes the elevation
of the nearer one to him to be 60°. After walking 80 feet in a
direction at right angles to the line joining their bases he observes
the elevations of the twe to be respectively 45°and 30° Find
their height and the distance between them.

14. An object is observed at three points 4, B, ' lying in a
horizontal line which passes directly underneath the object; the
angular elevation at B is twice that at 4, and at C is three times
that at 4 ; AB=aqa, BC'=b; shew that the height of the object is

2 Ha+B)(3-a).

If the tangent of the angle of elevation at 4 be }, shew that
da=13b.

15. A vertical tower whose base is in the same horizontal
plane with the observer, is observed from a station 4 to bear
directly North and to subtend an angle of 15°; the observer then
walks 100 yards so that the tower always subtends the same angle,
and then it bears North-east ; find its height and distance from A.

16. A person walking along a straight road observes that the
greatest angle which two objects subtend is a; from the spot
where this is the case he walks a distance ¢, and the objects now

T.T, 12
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appear as one, their direction making an angle 8 with the road.
Prove that the distance between the objects is

2¢sin asin 8

cosa+cosf’

17. A fortress was observed by a ship at sea to bear E.N.E,,
and after sailing 4 miles to the East it was observed to bear
N.N.E.; shew that the distance of the ship from the fortress at
the first and second observation was /(16 +8,/2) and ,/(16 —8,/2)
miles respectively.

18. A ship sailing towards the North observes two light-
houses in a line due West; and after an hour’s sailing the bearings
of the lighthouses are observed to be South-west and South-
south-west. The distance between the lighthouses being 8 miles,
find the rate at which the ship jis sailing.

19. From the top of the mast of a ship 64 feet above the level
of the sea the light of a distant lighthouse is just seen in the
horizon ; and after the ship has sailed directly towards the light for
30 minutes it is seen from the deck of the ship, which is 16 feet
above the sea. Find the rate at which the ship is sailing, con-
sidering the earth as a sphere of 4000 miles radius.

20. A man ascends a mountain by a path which is the shortest
distance between the base and the vertex. The inclination of the
path to the horizon at first is a, but afterwards suddenly increases
to B, and then continues the same. On reaching the vertex he
finds by the barometer he has ascended n feet in altitude, and
observes the angle of depression y of the point from which he
started. Shew that the distance he travelled in the ascent is

nes (435-)
—_

cos sin
) Y

21. If from two points in a horizontal plane an object be
seen at angles of elevation a, o, and if from a third point between
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the two points and in the straight line joining them and at dis-
tances a, @’ from them respectively the object be seen at an angle
of elevation B, shew that the height of the object above the hori-
zontal plane is

sin a 8in a'sin B {ad’ (& + )Y

{a sin"a (sin’ 8 — £in*a) + o’ sin’ @’ (sin’ A — sina)}4”

22. A person walking along a straight road observes the
angles of elevation a, o’ of the summits of two hills in front of him,
one behind and partially hid by the other. After walking ¢ miles
the farther hill becomes entirely hidden, and on observing the
elevation of the lower hill at the next mile-stone he finds it to be
B. Find the heights of the two hills,

23. A tower is surrounded by a circular moat. At noon on
a certain day the shadow of the top of the tower is observed to
project 45 feet beyond the edge of the moat. When the sun is
due West on the same day the shadow projects 120 feet beyond the
moat. The distance between the extremities of the shadow is
375 feet. The angle of elevation of the top of the tower from any
point of the edge of the moat is 60°. Find the height of the tower
and the altitude of the sun at noon.

24. A tower stands upon an inclined plane, meeting it at a
point 4 ; at a point C in the plane the tower is observed to subtend
an angle a; on proceeding to a point D in the line AC such that
CD = AC, the tower is observed to subtend an angle 83; if ¢ be the
angle between the tower and AC, shew that cot ¢ =2 cot a — cot 8.

Also if similar observations be made in another line 4AC°D it is

found that tan a’=2 tan 8’; the angle CAC'=1y; prove that if 6 be
the inclination of the plane to the horizon, sin  sin y = cos ¢.

25. 1In a triangle 4BC having given 4=30% 5=3,/3,a=3,
solve the triangle; and supposing that an error of 2” is made in
observing the angle 4, find approxlmat.ely the corresponding error
in the angle B.

12—2
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26. The distance between two objects on the opposite bank of
a river is known to be ¢. An equal distance is taken anywhere
along the bank on this side and the angles subtended by ¢ at the
extremities of this distance are a and 8. Find the breadth of the
river, the sides being parallel. _
27. ' A person wishing to obtain the breadth of a square fort on
a distant hill, observes that when he is due South of one corner,
the face towards him subtends an angle a. He then walks due
West, apd at a distance of a feet from his first position, finds that
the face subtends the same angle as before. On walking b feet
further, he is due South of the other corner of the face. Shew
that the breadth of the fort is
(@ + b) sec ¢ feet, where tan ¢ = batinba .

28. A4 and 4’ are the peaks of two mountains, and BC is a
straight horizontal road ; shew that if the nearer of the two peaks
just conceals the more distant at some point of the road, then
8in o sin B'=sin o’ sin B, where a is the altitude of 4 as seen from
any point B of the road, B is the angle 4.BC, and o, ' are similar
quantities for the peak 4’ as seen from any point B’ of the road.

29. 4 and B are two objects in the same horizontal plane,
P g point in the same plane at which the angle a subtended by
AB is observed ; from P two persons walk in this plane in directions
at ’éight angles to PA, PB respectively, to points @, R, at each of
which the angle subtended by 4B is a; the distances PQ, PR are
a, b; find the length of 4B,

30. A4, C, B are three objects in the same plane as an ob-
server; AC=CB, and AC, CB are at right angles to each other.
At the point O, AC, CB subtend angles a, B respectively. The
observer moves from O in the direction OO’ at right angles to CO
through a space 00'=d; here he finds that 4C, CB subtend angles
o/, 8 respectively. Find the distance 4 B.

31. A person standing at the edge of a river observes that
the top of a tower on the edge of the opposite side subtends an
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angle of 55° with a horizontal line drawn from his eye; receding
backwards 30 feet he then finds it to subtend an angle of 48°
Determine the breadth of the river, having given

Lsin 7°=9-08589,  Lsin 35° = 9-75859,
Lsin  48°=987107, log 3 = -47712,
log 10493 = -02089,

32. A tower 150 feet high throws a shadow 75 feet long
upon the horizontal plane upon which it stands. Find the Sun’s
altitude, having given

log 2=-3010300, L tan 63° 26’ = 10-3009994,
' Ltan 63° 27’ = 10-3013153.

33. A rope-dancer wishes to ascend a tower 100 feet high, by
means of a rope 196 feet long. If he can do so, find at what incli-
nation he must be able to walk up the rope, having given

log 2=-30103, Lsin 30°40"= 9-70761,

log 7=-84510,  Lsin 30°41’=9-70782.
34. Two hills rise at the same point, with inclinations of 60°
and 40° to the horizon. At a distance of 64 feet from the base of
the lower hill the angles of elevation of the bottom and top of a

vertical object on the other hill are 40° and 70°. Find the height
of the object, having given

L tan 20° =9-5610659, L cos 40° = 9-8842540,
log 2 = -3010300; 7-4303981 =1og 29640031,

35. A vessel observed another a° from the North sailing in a
direction parallel to its own. After an hour’s sailing its bearing
was f3°, and after another hour 4’ from the North. In what di-
rection were the vessels sailing?

36. In the problem discussed in Art. 242, shew that if
a+ 3+ C=m then ¢=1—r,

and the solution cannot be obtained from the data.
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XVI. PROPERTIES OF TRIANGLES.

246. The present chapter will contain some miscellaneous
propositions relating chiefly to the properties of triangles.

247. To find expressions for the area of a triangle.

A triangle is half a rectangle on the same base and altitude ;
thus if 4 BC be any triangle, and 4D the perpendicular from 4 on
the oppomte side, we have (see the figures in Art. 214)

area of triangle=4 BC. 4D,
and . AD=ABsin B,
therefore area of triangle=4 acsin B............... 1);

thus the area of a triangle is half the product of two sides into
the sine of the included angle.

By Art. 218, sin B= 2 /{s (s—a)(o-B) (= 9)};

substitute the value of sin B in (1) and we obtain
area of triangle=,/{s (s—a) (8—8)(8—¢)}.cerrvreennn.n. ©@);

this furnishes & convenient expression for the area when all the
sides are known; the expression ,/{s (8—a)(8—0b)(s—c)} is often
for abbreviation denoted by S. .
bsind _bsinC
snB’ °"snB’
substitute these values in (1); thus we obtain
b sin 4 sin ¢
W eseceesrcccss vt snscne .--(3),

thus we can find the area when a side and two angles are given,
for if two angles are given the third angle is also known.

By Art. 214, a=

area of triangle=
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248.  To find the radius of the circle inscribed in a triangle.

Let A BC be a triangle, O the centre of the circle inscribed in
the triangle and touching the sides in the points D, E, F. Let
r denote the radius of the circle; then

s

area of triangle BOC=3BC.0D=-;,

S"w

area of triangle 04 = ;CA OF =+

N

area of triangle AOB=4 AB.OF =

wl%

therefore, by addition,

(@+b+¢) % =area of triangle 4BC'=S, (Art. 247),

therefore r= :—9.

The radius of the inscribed circle is thus equal to the area of
the triangle divided by half the sum of the sides; and thus dif-
ferent, forms can be obtained for the radius by employing the
different expressions already given for the area of the triangle.
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249. We may also obtain the value of r in another form,

which will be often useful.
By Euclid 1v. 4, the lines 04, OB, OC blsect the angles

4, B, C respectively. Thus

184

B
BD 7'0015—2“,\ '0D=7'00t§,

B
therefore r (cot 7 + eot ;—') =a,
. B+C B.C
theref = —sin -
erefore rsin 3 asmzsmz,
asin = sing
therefore r=i 22
COo8s E‘

250. T find the radius of a circle whwk touches one side of a
triangle and the other sides produced.

" Let ABC be a triangle, and let O be the centre of the circle
which touches the side BC, and the other sides produced. Let

7, denote the radius of the circle.
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The quadrilateral 0BAC may be divided into the two triangles
0A B, OAC; therefore the area of this quadrilateral is ~; o+ g .
Again, the same quadrilateral may be divided into the triangles
OBC and ABC; therefore the area of this quadrilateral is

gr, +8. Thus

c b a
§r1+§r,=§rl+S;
therefore ,:'(0—4'26—_'—1)=S,
therefore = el .
8—a

Similarly, if r, be the radius of the circle which touches C4
and the other sides produced, and 7, the radius of the circle which
touches A B and the other sides produced,

L N
P g-b P e-c

A circle which touches one side of a triangle and the other

sides produced is called an escribed circle.

251. 'We may also obtain an expression for the radius of an
escribed circle similar to that in Art. 249 for the radius of the
inseribed circle.

For, in the figure of Art. 250, the line OB bisects the angle
which is the supplement of B, and the line OC bisects the angle
which is the supplement of C'; thus

BD = cot (90'—123), CD:r,oot(9o°-%);

therefore A (ta.n g+tan g)=a ;
acosB g co8 = CO8 —
therefore r = 50032_“ 2 2
1 B+C A :

s1n ) co8 E




186 PROPERTIES OF TRIANGLES.

252. To find the radius of the circle described round a tri-
angle.

Let ABC be a triangle, and O the centre of the circle described
round it. Draw OD perpendicular to BC, then BC is bisected in
D by Euclid 1v. 5. Let R denote the radius of the circle.

The angle BOC is double the angle BAC; therefore

BOD=A4;
~and BD=RsinA=£2';
a
therefore = m H
thus B is expressed in terms of a side and the opposite angle.
By Art. 218, 8in 4 =%—;Z, therefore
abe
R = m .

253. Many theorems have been demonstrated with respect to
the circles which have been noticed in Arts. 248—252; as an
example we will find an expression for the distance between the
centres of the inscribed and circumscribed circles.
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Let O denote the centre of the circumscribed circle, and O/
the centre of the inscribed circle; and suppose O and O joined
with the angular point C of the triangle. Then

00"=0C*+0C*-20C.0Ccos 0CO’;

now the angle O'CB =14 C, and the angle O0CB =90°— 4 ; thus

cosOUO’:cos(S)O"—A—%

A+B+C_, O\_ B-4.
(-T_" Tg)T* g

also 0C=R, 00:7' ;
sin 5

therefore 00”=R'+ - cos

By Art. 249, P ——

by Art. 252, R=

therefore 112 =4

Therefore

00" =R ?—I-z%{cosB_A —2sin}d sin;B}

2

- B4 B
= '7{"“5"‘”2 B’ 2}
. sin
2
=R'—2Rr,
Therefore 00’ =,/(R* - 2Rr).
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254. To find the area of a quadrilateral whick can be in-
scribed in a circle.

Let ABOD be the quadrilateral ; let
AB=q, BC=b, CD=c¢, D4d=d.

D

The figure can be divided into the triangles ABC, ADC; its area
therefore

=} (absin B + cdsin D)=} (ab + cd)sin B,
for the angles B aﬁd D are supplemental. ’
~ Now from the triangle 480, '
AC* = o’ +b* — 2ab cos B,
and from the triangle CDA,
ACP=c*+ d*— 2¢d cos D = ¢* + d* +2cd cos B
therefore  ¢*+ d' + 2¢d cos B=a’ + b* — 2ab cos B,

L V- .
therefore cos B = _W ’
therefore sin*B=1— M

L (ab + cdy
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_{2(ab+cd)+c'+d'-a'— b} {2 (ab+cd) - ' —d" +a*+ b7}

X 1 (ub + cd)’
_Hc+a) ' —(@-b)}{(a+8)—(c—d)%}
4 (ab + cd)’
_(c+d+d— a)(a+c+d—-b)(a+b+d—c)(@+d+c— d)
4 (ab +cd)*

Now let 4 (@ +b+c+d)=s; thus

gin® B— 16 (s —a) (8—-0) (s— c)(a—d)
4 (ab +cd)*

Hence the area of the quadrilateral
=wNi(e-a)(e-8)(e—c)(s-d)}.
If we substitute the value of cos B in the expression.for 4C*,
2¢d (a" +0° — ' - d7)
2 (ab + cd)

s cd(a'+ b —c' ~d'
= +d'+—T+'cZi"
(ac+bd)(ad+bc)
ab +cd

we obtain AC*=c*+d* +

Similarly it may be shewn that
a+d-b-c
2 (ad +bc) ’

BD— (ac+0d) ( (ab+cd)
T ad+be

cos A =

The radius of the circle described round the quadrilateral
may be easily expressed; for this circle passes round the tnangle
A4BC, hence-by Art. 252 its radius

40 1 (ab+cd)(ac+bd)(ad+bc)}
“2sinB % {(e a)(8—b)(8—c)(s—d)
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255. To find the radit of the inscribed and circumscribed
circles of a regular polygon.

Let AB be the side of a regular polygon of » sides; let O be
the centre of the circles, 0D the radius of the inscribed circle, 0.4
the radifis of circumscribed circle. '

Let AB=a, OA=R, OD=r.
The angle 40B is the n** part of 4 right angles, that is,

AOB=27:5, 40p==

=,
AD=3=Rsin“=rtan”;
2 n n

therefore R=2 y = 2

2sin " 2tan —
n n

256. The area of a regular polygon may be expressed by
means of the radius of the inscribed circle, or the radius of the
circumscribed circle. For with the figure of Art. 255, the area
of the triangle A0B
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therefore the area of the polygon

—m,cotw
T4 n

=nR*sin®— cot———R’ sin 2—”
n 2 n

Also the area of the polygon
=nr’ tan’ = cot — =nr’ tan —.
noon n

257.  To find the area of a circle.
The area of a regular polygon of n sides described about a

circle of radius »
gin Z
o n

k.
=01 AN — = e—, —,
n L .

n n

Now suppose n to increase without limit, then the area of

the polygon approximates continually to the area of the circle as

its limit, and therefore the area of the circle will be the limit of
the above expression. But when 7 is indefinitely great,

., T

sin —

eos:+;=l, =1, (Art. 118);

. n
therefore area of circle of radius r =nr".

258. To find the area of a sector of a circle.
Let 6 be the circular measure of the angle of the sector; then

area of sector _ i .
area of circle 2=’
6 6

therefore ares of sector = -n-r' X o— = —
o9r 2°
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Since @ is the circular measure of the angle of the sector, the
length of the arc of the sector is 76; hence the area of a sector is
equal to half the product of the length of the arc into the radius.

EXAMPLES,

1. The sides of a plahe triangle are 24, 30, 18; find the

area.

2. Two angles of a triangle are 15° and 45°, and the included
side 10 feet; find the area.

3. The sides of a triangle are equal to 3 and 12 respectively,
and the contained angle is 30°; find the hypotenuse of an equal
right-angled isosceles triangle.

4. The area of a triangle= 1 (a* sin 3B + b*sin 24).
. a®—b* sin Asin B
5. The area of a triangle = T sm{@d-B)
6. The area of a triangle
_ 2abc o 4 B sC
e sl L LT

7. Shew that the triangle whose sides are proportional to
gh(F+), K+, (W gl) (- gh)
has its area and the trigonometrical ratios of its angles rational. -

8 .The sides of a triangle are in arithmetical progression, and
its area is to that of an equilateral triangle of the same perimeter
as 3 to 5, Find the ratio of the sides and the value of the largest

angle.

9. If the alternate angles of a regular hexagon be joined so as
to form another regular hexagon, and again the alternate angles of
the latter hexagon be joined, and so on, shew that the sum of the
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areas of all the figures so formed-—, where 4 is the area of the

original figure. And generally if the figure has n sides, the sum
4 cos® 2m
n

. T . T
sin —81n -
n o n
Explain the cases where n =3 or 4.

10. If an equilateral triangle be described with its angular
points on the sides of a given right-angled isosceles triangle, and
one side parallel to the hypotenuse, its area will be

2a* sin 60° (sin 159",
where a i8 a side of the given triangle.
11. The distance hetween two points is @, and their distances

from a given line are b, ¢; of all the triangles which can be formed
having the same base @, and whose vertices lie on the given line,

the area of that which has the greatest vertical angle is ‘2_‘ J(Be).

12. The straight lines which bisect the angles 4; C of a
triangle 4 BC meet the circumference of the circumscribing circle
in the points 4’, C"; shew that 4'C’ is divided by CB, B4 into
three parts, which are in the proportion

sin"—4 2smAsmanC sin’g
2" 2 g g ¢ 2°

13. If a be the difference between the sides containing the
right angle of a right-angled triangle, and § its area, the diameter
of the circumscribing circle is equal to ,/(a® + 4S).

14. The sides of a plane triangle are 3, 5, 6; compare the
radii of the inscribed and circumscribed circles.

15. OQisthe centre of the circle circumseribed round a tna.ngle,
and 40 is produced to meet BC in D ; shew that
DO cos (B— () =40 cos 4.
T.T. 13
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16. A circle is inscribed within a given triangle, and another
triangle formed by joining the points of contact; within this latter
triangle a circle is inscribed, and another triangle formed as before,
and so on continually ; shew that the triangles thus formed ulti-
mately become equilateral.

17. The sum of the diameters of the inscribed and circum-
scribed circles of any plane triangle is equal to

acot A +bcot B+ccotC.

18, Perpendiculars are drawn from the angles 4, B, C of
a triangle on the opposite sides, and produced to meet the circum-
“scribing circle; if those produced parts be a, B, v respectively,
prove that
a b ¢ - '
- +—+ —=2 (tan 4 + tan B + tan 0).
e By ( %
19. A circle is inscribed in a triangle 4BC, and smaller
circles are described so as to touch this circle and the two sides of
the triangle; find their radii. )

20. -In any triangle the area of the inscribed circle is to the
area of the triangle as 7z to cot % cotg cot g

21.  On each side of an acute-angled triangle as base an isos-
celes triangle is constructed, the sides of each being equal to the
radius of the circumscribed circle; if the vertices of these be
joined a triangle will be formed equal and similar to the original.

22. If R be theradius of the circumscribed circle of a triangle,
acos 4 +bcos B+ccosC=4Rsin Asin Bsin C.
23. 0 is the centre of the circle circumscribed about a triangle

ABC ; from O the perpendiculars OD, OF, OF are drawn to the
sides; shew that

4(OD* + OF* + OF*) =a’ cot* 4 + b* cot*B + ¢* cot*C.
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24. If r be the radius of the circle inscribed in a triangle,
and 7, 75, 7., the radii of the circles inscribed between this circle
and the sides containing the angles 4, B, C respectively; prove
that

) + ) + Jrr) =r.

25. Given the segments into which the base of a triangle is
divided by the point of contact of the inscribed circle ; find the
greatest possible value of the radius of the inscribed circle.

26. If a triangle A’B'C" be formed by joining the fget of the
perpendiculars let fall from 4, B, C upon the opposite sides, shew
that B'C" = R sin 24, where R is the radius of the circle circum-
scribed about 4 BC.

27. Perpendiculars drawn from the angular points of a
triangle to the opposite sides meet those sides in the points D,
E, F; prove that if Band B, be the radii of the circles described
about the triangles 4 B(C' a.nd DEF respectively, and 7, the radius
of the circle inscribed in the latter triangle,

R =3 R,andr,=2Rcos 4 cos B cos C.

28. If r, r, r, r, denote the radii of the inscribed and
escribed circles of a triangle, prove that

tan? 2 _ T

2 rgS

29. 1If A be the area of the circle inscribed in a triangle,

4, A, A, the areas of the escribed circles, then
J.1,1.1
N/ 4 '0/ Al h/ Aa N/ Al )

30. If the sides of a triangle be in arithmetical progression
the perpendicular on the mean side from the opposite angle, and
the radius of the circle which touches the mean side and the other
two sides produced, are each equal to three times the radius of the
inscribed circle.

132

-

“ieee

. .
. .
-
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31. The distances of the centre of the circle inscribed in a
triangle from the centres of the three escribed circles are respec-
tively proportional to

and sin —.

LA
g, Mg, 2

32. Two similar triangles have a common escribed circle
touching sides not homologous a,, b, ; shew that -

a, :a,=sin B+sin C—sin 4 : sin 4 +sin C —sin B.

17

33. If 0, O, O, are the centres of the escribed circles of a
triangle, then the area of the triangle 0,0,0,

. a b c
=area of triangle ABC{I tive—at aro B +a+b—c}'

34. The centres of the three escribed circles of a triangle
are joined; shew that the area of the triangle thus formed is

2;0, where 7 is the radius of the inscribed circle of the original
triangle.
35. A’, B, (' are the centres of the escribed circles of a tri-

angle; 4’, B, (" are joined so as to form a triangle; if » and ' be
the radii of the circles inscribed in 4 BC and 4’B’C’ respectively,

A B C
00t—2- cOt-2—00t §

LIRS
]

A )’
€08 5 + €08 5 + CO8 &

2 2 2

36. Ifr be the radius of the circle inscribed in a triangle
ABC, 2s the sum of the sides, #, 25" similar quantities for the
triangle which is formed by joining the centres of the escribed
circles ; shew that

™8 g ‘i"nB ing
7 =2singsingsing.

37. Let q, a, be the distances of the angle 4 of a triangle from
the centres of the inscribed circle, and the circle touching the side
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a and the other two produced; B8, B, similar quantities for the
angle B; v, y, similar quantities for the angle C'; shew that
aﬁ Y alB = (a'bc)"

bc+ca+ab_1
o' BT

1 1 1 1\, /1 1\_
“(-3)+FG35)*7(3-a)=0

b—¢c c—a a-b

oS —
2
aa’  bB°

38. There is only one point within a triangle, such that if
perpendiculars be drawn from it to the sides, circles can be in-
scribed in each of the three resulting quadrilaterals; prove this,
and if p, p, p, be the radii of these circles, and p that of the
inscribed circle of the triangle, then

(: 1)(: 1) C l)(Pl 1) c 1)(1 l) 1
== ===)+ (=== )===) + (===)(===) =5.
1 P. 2 P Ng P 8 P 8 P. Ps P P
39. A circle is inscribed in a plane triangle ABC. Another
circle is described so as to touch the two sides 4B, AC, and the
last circle ; again, a third circle is inscribed so as to touch the
same two sides 4 B, AC, and the second circle, and so on. Circles
are also inscribed in the same way so as to touch BC, B4 and

CA4, CB. Shew that the area of the inscribed circle is to the sum
of the areas of all the other circles as 1 is to

. B+C 4 ., C+4 sc§+sin‘A+Bmecq
sin* —— cosec + sin‘ ——cosec 5 < g

40. O and O are respectively the centres of the circles
described about and inscribed in a plane triangle 4BC. Join
04,0B,00, 04, O'B,0'C, and let R, R,, R, r,, 74, 7., be respect-
ively the radii of the circles circumscribing the triangles BOC,
COA, AOB, BOC, CO'A, AO'B. If R be the radius of the circle
circumseribing the given triangle 4BC, shew that

b ¢ abe

a
d E+E+E B

ray, - R

-~ =-——— an
abe  a+b+c’

I
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~ 41. From any point P within or without a triangle 4BC,
perpendiculars P4’, PB’, P(’ are dropped upon the sides BC, C4,
AB ; and circles are described about the triangles PA'B’, PB'C",
PC’A’. Shew that the area of the triangle formed by joining the
centres of these circles is one-fourth of the area of the triangle

ABC.

42. Three circles touch each other externally ; prove that the
square of the area of the triangle formed by joining their centres
is equal to the product of the sum and product of their radii.

43. If the sides of a triangle be in geometrical progression,
and the perpendiculars from the angles upon the opposite sides be
taken as the sides of a new triangle, then the angles of this new
triangle will be equal to those of the original triangle.

44. If o, B, y be the ratios which the sides a, b, ¢ of a triangle
bear to the perpendiculars upon them from the opposite angles
4, B, C, then a*+ 87+ y* —2 (e + By +ya) +4=0.

45. In any triangle shew that

cosg- sino

2 2
c=(a—">) A—B_(a+b) 3
sill—2-~— COo8 ——2—"‘

46. The sides of a triangle are 65 and 25, and the difference
of the opposite angles is 60°; find all the angles, having given

log 3=-4771213, log 2= 3010300,
L tan 52° 24'=10-1134508, L tan 52° 25’ =10-1137122.

47. If perpendiculars be drawn from the angles of a triangle
to the opposite sides, shew that the sides of the triangle formed by
joining the feet of those perpendiculars are acosd, bcos B, and
ccos C; and thence shew that

a’ cos®4 —b* cos® B - ¢ cos* C

2bc cos B cos C =coe 24,
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48. Six circles are inscribed between the three escribed circles
of a triangle and the angular points, each touching a side and
a side produced; prove that the products of their radii taken
alternately are equal.

49. If R be the radius of the eircle circumscribing a triangle,
p the radius of an escribed circle, the distance of the centres of
these circles is ,/(R"+ 2Rp).

50. Lines are drawn from the augles 4, B, C of a triangle
through any point P meeting the opposite sides of the triangle in
the points 4’, B, C’ respectively; shew that

AB.BC.C4A'=AC. BA'. CB.

51. Shew that the perpendiculars from the angles of a tri-
angle upon the opposite sides meet in a point.

52. Shew that the lines which bisect the mtemal angles of
a triangle meet in a point.

53. Shew that the lines which join the angles of a triangle
with the middle points of the opposite sides meet in a point.

54. Shew that the lines which join the angles of a triangle
with the points where the inscribed circle touches the opposite
sides respectively, meet in a point.

55. A quadrilateral figure is so taken that a circle can be
described about it and inscribed in it. If its sides be produced in
both directions, and r,, 7, 7,, 7, be the radii of the circles, in-
scribed in the triangles formed on two sides, and escribed on the
other two sides, then 7, 7,7, 7,= 7, where r is the radius of the
circle inscribed in the quadrilateral
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XVIIL. ON THE USE OF SUBSIDIARY ANGLES IN
SOLVING EQUATIONS AND IN ADAPTING FOR-
MULZ TO LOGARITHMIC COMPUTATION.

259, We shall now shew how to obtain the numerical values

of the roots of a quadratic equation by the aid of Trigonometrical
Tables.

(1) Suppose the equation to be
o —2px+q=0,"
where p and ¢ are both positive; from this equation we obtain

e=puv'-9-p{1=,/(1-5)}- -

Now if ¢ is less than p® assume 1% =sin’f; thus

z=p(l=cosf)=2p cos’%; or 2p sin’g.
I q is greater than p* the roots are impossible; we may then
assume I% =sec’0; thus '
z=p{l=,/(-1)tanb}.
(2) Suppose the equation to be
z'—2px—q=0,
where p and ¢ are both positive; from this equation we obtain

copedn-rlie (3}

Now assume tan®6 = g; ; thus

' cosf =1 cosf=1
NI T

0 0
=,Jqoot§ or —,thanﬁ.
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(3) If the equation is of the form z*+ 2pz +¢ =0, where
p and ¢ are positive, we can solve the equation 2* — Spx + ¢ =0, and
then change the sign of the roots (Algebra, Art. 340).

(4) If the equation be of the form «* + 2px — ¢ =0, where
p and g are positive, we can solve the equation &' —2pxz—¢ =0,
and then change the sign of the roots.

260. In like manner we may obtain the numerical value of
the roots of a cubic equation by the aid of Trigonometrical Tables ;
we will exemplify this by considering one case.

Let the equation be #’— gz —7=0, and suppose 277" less than
4¢’. Put z=ny; thus

'y’ — gny—r=0,

therefore Yy —% - 7% =0.

Now by Art. 91, cos’a— % cosa — c013a= 0;

3 r cos3a
assume y=cosa, Z=7%; thenai: Z 4‘;
i i
thus n=<437q) s coe3a=4r(4%) ;
the last equation determines 3a, and thus a is known, then
4
y=cosa and z=ncosa= (%q) cosa.

The value of cos 3a is less than unity, since we have supposed
27" less than 44"

It appears from Art. 105 that we might also suppose

. 2
Yy =cos (—?:*a),
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consistently with the value of cos 3a given above ; thus finally the
three roots of the cubic equation are

2 (%)icosa and 2 (%)icos (2; * a) )

$
where cos 3a= r (ﬁ) .
2\g

261. «If in mathematical researches equations like those that
have been given of the second and third degree, presented them-
selves to be solved, their solution would be conveniently effected
by the preceding methods, and by the aid of the Trigonometrical
Tables; but the truth is, in the application of Mathematics to
Physici; the solution of equations is an operation that very rarely
is requisite, and consequently the preceding application of Trigo-
nometrical Formule is to be considered as a matter rather of
curiosity than of utility.”—(Woodhouse’s Z'rigonometry.)

262. To the examples which have already occurred of the
use of subsidiary angles we will add two more.

(1) Required to adapt @+ b to logarithmic computation.
If @ and b are necessarily positive we may proceed thus; assume

é=1;tm’0; then
a
a+b=a<l +%)=a(1+tan’0)=asec’0.

If @ and b are not necessarily both positive we may proceed

thus ; assume %: tan 6, then

a+b=a(1 +%)=a(1+tan0)=a"/2 cos6 smo)

cosf \ /2 +-J—2

_aJ2 . -l_r)
cosvsm(0+4 .
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(2) Required to adapt acosa=bsina -to logarithmic
computation. Let %: tanf; thus

. b . .
acosa=bsina=a (cosa*;sma =a(cosa=tanfsina)

cos(a—6) or —ca':—ocos(a+0).

_®
cos @

MISCELLANEOUS EXAMPLES.

1. Solve #*+92°+21x+13=0.

2. Shew that the roots of the equation 2*~3x—1=0 are
2 cos 20°% — 2sin 10° — 2 cos 40°.

3. Shew that the roots of the equation o —pa®+qr+r=0

§ 4 Sraxa - /5\*

are 2 (%) cos‘—;— and 2(151) cos "—51—3, where cos’a= i (;)
. r\* 'p\*
provided p* =5¢ and (5) be less than (5) .

4. Find the roots of the equation
«* — 102" + 202 -8 =0.

5. A person wishes to ascertain the side BC of a triangular
field ABC, but is only able to make measurement of lines within
the boundary of a circle which passes through 4 and touches BC ;
shew how after measuring four lines he may determine BC.

6. Two men standing at the same point C observe the hori-
zontal angle subtended by two objects 4 and B ; they then both
move away, one in the direction AC, the other in the direction BC,
until each observes the horizontal angle to be half what it was
before. The distance each walked being given and the horizontal
angle at C, determine the distance 4B.
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7. The altitude of a balloon at noon is observed at three -
places 4, B, C simultaneously to be 45° 45°, and 60° respectively ;
4 and B are respectively west and north of C; form an equation
for determmmg the height of the balloon.

8. The distances b and ¢ of a station 4 from two other
stations B and C are known, and the angle BAC is required. It
not being practicable to observe the angle BAC, the angle BOC
(a) and the angle 40C (B) are taken at a position O situated in
the plane 4. BC, at a small known distance » from 4. Shew that
if @ be the circular measure of the angle (BAC—-BOC) then
approximately

pun (B2~ inB)
c

9. At a distance of 50 feet from the foot of a tower the eleva-
tion of its top is 45°; if the elevation and the distance be correctly
measured within 1’ and 1 inch respectively, find approximately
the greatest error in the height.

10. A person standing at a distance ¢ from a tower sur-
mounted by a spire, observes the tower and spire to subtend the
same angle; if b be the known height of the tower, express the
height of the spire (c) in terms of b and a.

If y be the error in the height of the spire corresponding to a
small error B in the height of the tower, shew that
v B wl}
P {1+a‘—b‘ :
11.  One side of a triangle and the opposite angle remain con-

stant; shew that the small variations of the other sides y and
are connected by the relation

ysecC +Bsec B=0.
12. The angular altitude and breadth of a cylindrical tower

on a level plane are observed to be a and S respectively; and at a
point a feet nearer the tower they are found to be o’ and 8’; find



EXAMPLES. CHAPTER XVII. . 205

the height and radius of the tower. Find also the relation exist-
ing between q, o, 8, B’

13. In the preceding question if the observed angular breadth
be subject to an error §, and if p be the greatest consequent error
in the calculated radius (r), shew that p will be given by the
equation

?B 4(ﬂ' B){coseczﬁcosecg'—eot’gcotﬁ}
i If B=60°% B'=120° 8=6, find approximately the ratio of the
_ greatest error in the calculated radius to the radius.

14. P, Q, R are three known positions in a straight line, and
PQ, QR are observed to subtend equal angles at a certain point S;
find the error in the calculated distance of S from @ in conse-
quence of a small error a in the observed angles.

XVIII. INVERSE TRIGONOMETRICAL FUNCTIONS,.

263. The equation sinxz=a asserts that x is an angle of
which the sine is @; it is found convenient to have a notation for
expressing this relation in which & stands alone. The notation
used is this, z=sin"'a. Similarly the equation z=cos™'a ex-
presses that « is an angle of which the cosine is a; and z=tan™a
expresses that « is an angle of which the tangent is a; and so on.

264. Experience will prove that the notation here given is
often convenient; and we may shew that it is not altogether an
arbitrary notation, but one that naturally presents itself. For, let
any function of x be denoted by f'(x); then the same function of
(), that is, f{f(z)}, may be briefly and conveniently denoted by
S*(x). Thus, for example, the logarithm of the logarithm of 2
may be denoted by log’z. Similarly /]f{f(x)}] may be briefly
and conveniently denoted by /*(z); and so on. Thus with this
notation we have, when m and » are positive integers,

ST @)= ().
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Now we may examine what meaning it will be necessary to
ascribe to f/"(z), in order that the relation just given may hold
when m or n is zero. Suppose n= 0, then the relation becomes

S =)

this leads us to settle that /() shall be considered equal to 2.

Again we may examine what meaning it will be necessary to
ascribe to /() in order that the relation /™ f*(x)=/"*"(x) may
hold when m or » is—1. Suppose m=1 and n=-1; thus the
relation becomes

S @ =) ==

so that /~'(z) must denote a quantity whose function £ is .

Thus sin~’z should denote a quantity whose sine is x; and
this is the meaning which we have already assigned to the symbol.

It will be observed that consistently with the remarks here
made, sin*z should stand for sin (sin «), and not for sinz x sin .
But as sin (sin) is a function which rarely occurs, it is custom-
ary to use sin’ for what should be denoted by (sin z)".

265. Any relation which has been established among trigo-
nometrical functions may be expressed by means of the tnverse
notation. Thus, for example, we know that

2 tan 8
tan 0= e
this may be written
2 tan 6
—tan—t (28RO N,
26 =tan 1—tan*9/’ '
let tan f=a, so that f=tan"'a; thus
2tan™'a =tan™! 2a .
1-a*

Similarly the relation sin30=3sinf—4sin®6 may be ex-
pressed thus, : '
3sin~'a=sin"" (3a - 4a°).
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EXAMPLES.

1. Prove that tan™' §=2tan™" 4.
2. Find the value of sin (sin™ } + cos™ }).

3. Prove that sin™’ 7—? =gin™! 3 +8in™! 8

85 5 17°
4. Find the value of tan (tan™ z + cot ~* ).
5. Prove that tan™ J+tan™' +tan™' } +tan~' } = ;.

6. a-b b—c

-1, _gor -1 a -1 -1
Prove that tan™' a =tan 1+ab+tan 1+bc+ta.n c.
7. Find the tangent of
_11 _11 —l_]:_ m
3 tan 7+tan §+tan 61

8. Shew that
tan™' {(,/2 + 1) tan o} — tan™" {(,/2 — 1) tan a} = tan" (sin 2a).
9. If tan (0—a)tan (6 - B)=tan’@ ; then

6= 3tan™ —_‘—252:1(: 1“;3';3 .
10. Prove that cos™* ',/(%2)+ osec""‘—/(i—12 =E.
11. Prove that sin“%+ sin"‘—l%+sin" ;—g = %’
12. Prove that 3 tan-l-i-nan-' ’2}6 = ’z'—tan-’ 1—915.
13. Prove that tan"%aj—: + tan"’%%‘f = %

14, Prove that tan (2 tan™' a)= 2 tan (tan"'a + tan™" a’).
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15. Prove that
tan™’ (3 tan 24) + tan™" (cot 4) + tan™* (cot’4) = 0.

16. Prove that

26 T -,a) T aa
== (z+§cos % +tan<z—§cos 3)

17. Prove that

5 cosec (,} tan™! b) 5 sec? (1} tan™! ) (a+ b) (a® +b%).
Solve the following seven gquatlons in .
18. sin~'a+sin”
19. sin™ 3—‘2, + sin"~i—b =2tan 2. ‘

20. tan~'(z—1)+tan"'z+tan™' (x +1) =tan™' 32

21. sin™'2z—sin~'z /3 =sin""a.

22. tan”'l+2tan'}+tan™'} +tan —lé 77;‘
23. sin2cos™'cot2tan' & =0,

- el -
2 ten a——i_m z+ten a—z+1°

25. Ifsecf— cosecﬁ-é,shewthate——sm ‘g.

26. If sin (m cos 6) = cos ( sin 6), shew that 6=« § sin™ J.
27. Shew that if sin0+ain"¢ =4, one of the values of ¢
which satisfy the equation

Y =sin" l(sm0+sin<[>)+sin“(sin0—sin é)

s (2n+1)’§'.
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28. Find  from the following equation, 1
Sty L tan L]

2+,/3

29. Shew that one of the expressions

sm“‘26+a . a+b
a+ a+c

is an odd multiple of = 3

ool

30. TFind all the positive integral solutions of

tan~'z + tan"%:tan"&

31. Bhew that if ¢ be a positive integer, the equation
tan"'z+tan~'y =tan"'c
has no positive integral solutions ; while the equation
tan“;é+ta.n"},=tan"‘lo
has as many as there are different divisors of 1 +¢*

32. Prove that tim"‘§=tan" 7Y tan H=°

cy+ax ce +1
-1 6—C, -1 G a1
+ R IR +tan~' 2T % 4 tan 1=,
eyt + 1 Calu_, +1 Co
where c,, ¢, ...... ¢, are any quantities whatever.

33. The sum of any number of angles

. -1 2ab .y 2070
e S g
may be expressed in the form
. o 2om
m.;_‘_”!,

where m and 7 are rational functions of a, , a, ¥/, ......
T.T. 14 e
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34. Write down the g;meral value of sin™ & ;) , Where m

is an integer.

(Gt
2

35. Write down the gemeral value of cos™ , Where m

is an integer.

XIX. DE MOIVRE'S THEOREM.

266. The student has already learned from Algebra that
although the square root of a negative quantity is the symbol of
an impossible operation, yet such roots are of use in mathematical
investigations. It is usual to adopt the convention that

Wa)=ay-1),

and that such expressions as a,/(—1) shall be subject to all the
laws of algebraical transformations. In the remainder of the pre-
sent work it will be found that ,/(—1) occurs very frequently in
our investigations; we shall for the present assume that this
expression may be freely used like any real algebraical expression,
and hereafter we shall give some remarks on the question of the
validity of demronstrations which are obtained by the use of the
symbol ,/(—1). (See also Algebra, Chap. xxv.)

267. De Moivre's Theorem. Whatever be the value of n posi-
tive or megative, integral or fractional, cos n§+,/(—1)sin nd s
one of the values of {cos 6 + ,/(— 1) sin 6}", .

Multiply cosa+,/(—1)sina by cos B+,/(—1)sin B;
the product is .

cos acos B —sinasin B+ ,/(—1){sina cos B + cosasin B},

that is,» cos (a + B) +,/(— 1)sin (a +B);




‘thus we obtain
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multiply the last expression by

cosy+,/(—1)siny;
the product is
cos(a+B+y)+,/(-1)sin(a+B+y).
By proceeding in this way we obtain the product of any num-
ber of factors of the form cosa+,/(—1) sina. Suppose there are

n of these factors, each factor being cos @+ ,/(~ 1) sin §; we then
have .

{cos 6+ /(— 1) sin 6} = cos nf + /(- 1) sin 26,
This proves De Moivre’s theorem when = is a positive integer.

Next, let n be a negative integer; suppose n =—m, then
{cos 6 +,/(—1) sin 6}" = {cos 6 + /(1) sin 6}~
1
“leos 0+ /(=1) si.n@}"
1
~cosmf + A (= 1) sin mf 3
multlp]y both numerator and denominator by
cos m0 N(=1) sinm8,
cosmf — /(- 1)sinmf _

) cos’mf +sin*mf ’
that is ' cos mb — ,/{—1) sinmb ;
-that is cos (—mb) + /(- 1) sin (— mf),
or cosnf + ,/(— 1) sin nf.

This proves De Moivre's theorem when % is a negative integer.

Thus, since when = is any integer,

{cos 0 + \/(— 1) 8in 8}* = cos n6 + ,/( —1) sin nf,

'it.'follows that cos 0+ /(1) sin 6 is one of the values of

{cosnf + /(- 1) sin n0}'

when « is any. integer.
14—2
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Lastly, then, let n be a fraction; suppose n =%, then

{cos 0 + /(- 1) sin 6}* ={cos 6 + ./(— 1) sin 0}s

— {cospf + /(~1)sinpO}e,

and one of the values of the last expression is
po . po
cos =+ /(- 1) sin—.
ARCLLY-

Thus De Moivre’s theorem is completely established.

268. We have shewn that when = is fractional,
cos nf + /(- 1) sin nf
is one of the values of
{cos 6 + /(= 1) sin 6}*;
we shall now shew how all the values of the last expression may
be obtained. Suppose n=§ . Now cosf and sin§ remain un-

changed when 6 is increased by any multiple of 2, while by put-
ting 6 + 27 instead of 6, and ascribing to 7 in succession different
integral values the expression cos n8 + ,/(— 1) sin n6, assumes ¢ dif-
ferent values and no more. For suppose r successively equal to
0,12,.... g—1; then we obtain the series of angles

p_o p(@+27) p(6+4n) »(0+ 2gm —2x)
b H gecees Py

q q q q

and we know that no two of these angles can have the same sine
and the same cosine, because no two of these angles are equal or
differ by a multiple of 2r. (See Art. 93.) Hence we obtain
g different values of the expression cos nf + ,/(—1) sin nf. We
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shall not in this way obtain more than g different values, for if
r=g+ mgq, where m is any integer positive or negative,

o8 n (6 + 2rxr) and sin n (6 + 2rr)
are respectively equal to
cos n (0 + 2¢w) and sin 7 (6 + 2ex).

‘We can thus find ¢ different values for the expression

{0086+ /(- 1) sin 6)}s ;
that is, we can find ¢ different expressions, which by being raised
to the ¢* power, produce cos p6 +,/(— 1) sin pf. And it is known
from the theory of equations that there are g values of z, and no
more, which satisfy the equation 2 = ¢, where ¢ is either real or of
the form a + b,/(— 1) ; thus we infer that we know all the values
of the expression

{o086 + /(~ 1) sin B .

269. We proceed to deduce some important results from De
Moivre’s theorem. 1In the equation

co8 nd + /(- 1) sin nf = {cos 6 + /(~ 1) sin )",

suppose n & positive integer. Expand the right-hand member by
the Binomial Theorem, and equate the possible and impossible
parts of the two members; thus

( )

cos nf = cos™d cos"~?0 sin®@

Ln(n—l)(n—2) (n-—3)
) 14

sin nf =n cos™ '@ sin 6 —

cos" *f sin‘d— ......

n(n—1)(n-2)
3

cos"*@sin®f— ......

cos" %9 sin®f

n(n—1)(n—2)(n—3) (n—4)
L5

+



~N
214 DE MOIVRE'S THEOREM.

270. The preceding formule hold whether » be odd or even,
but the last terms of the expressions on the right-hand side are
different in the two cases, and it will be useful to distinguish the
cases.

If n be even, the last term of the expansion of
{cos + ,/(— 1) sinb}"

is possible, namely, (—1)?sin"6; and the last term but one is
n—1

impossible, namely, n (— 1) ® cos § sin""*4, which may be written

n—2
JE1)n(=1)7% cosfsin®'6. Thus when # is even
the last term of cos 70 is (- 1)2 sin" 6,

n-2
and the last term of sin n is 7 (—1) 2 cos 6 sin™™' 4.
If » be odd, thelast term of the expaunsion of {cos 8 +,/(— 1) sin 6}*

is impossible, namely (- 1)3 sin"6, which may be written

n—1
NJ(=1)(=1)" sin"6;
and the last term but one is possible, namely

n—~1

n(—-1)% cosf sin*' 4.
Thus, when = is odd,
-1
the last term of cos n6 is n (—1)¥ cos § sin™™" 6,
and the last term of sin nf is (- l)n_;lsin"O.

271.  From the formulw for sin 2§ and cos nf we can deduce
an expression for tan nf in terms of the powers of tan 6.
sin nd

For ta: =
or tan nf o5 nd

7 cos” '@sin § — ’li"_'léu cos" %0 sin®0 + ...
= n(n—1)
1.2

cos™0 — cos" *@sin® 0+ ...
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Now divide both numerator and denominator of this expres-
sion by cos® §; thus we find for tan n6 the expression

nn-1)n-2), , (n—1)(n—2)(n—38)(n—4)
{ ?3( )tan0+n X [5
nn—1), o nn-1)(n-2)(n-3), ,
1——(1—2—)tan0+ [ ! tan‘6 —

ntanf— tan®9—...

.

272. If n be even, the last term of the numerator of tan nd
is »(- 1)‘7-’t.an""0, and the last term of the denominator is
(- 1); tan"d. If n be odd, the last term of the numerator is
(- 1)"—;l tan"d, and the last term of the denominator is
'n(—- l)!;ta.n"’ 0.

These results follow from those established in Art. 250.

273. 'We may also obtain general formule for the sine, cosine,
and tangent of the sum of any number of angles which are not
all equal. 'We have seen (Art. 267) that

. {cos a+,/(~1)sina} {cos B +,/(~1) sin B} {cosy +,/(~ 1) siny}......
=cos(a+B+y+.....)+ /(- sin(a+B+y......).
Now cos a+,/(~1) sin a=cosa {1 +,/(— 1) tana},
cos+/(~1) sinf=cosB{1 +,/(~ 1)tan B),

..............................

thus we obtain
cosacosﬂcos-y..t{l+,J(—l)tana}{l+,/(—l)tanﬂ}{l-;J(—l)tany}...
=cos(@+B+y+.....)+/(=1)sin (a+B+y+...... )
Let s, denote the sum tana+tanB+tany+ ...... ; let s,

-denote the sum of the products of the tangents taken two at

. & time; let 8, denote the sum of the products of the tangents
taken three at a time; and so on.
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Then by multiplying together the factors 1+ ,/(—1)tan a,
+/(=1)tan B, 1 + /(- 1) tan y, ...... and equating possible and
impossible parts we obtain

cos(a+fB+y+...)=cosacosBcosy...{l—8,+3—8+..},
sin(a+B+y+...)=cosacosBcosy...{s,—8,+8,—8+...}.
By division,

' 8 —8,+8 —8,+ ...
tan(a+B+y+..)=21—2" "8 7 .
(@+f+y ) 1-38+8—8,+...

If n be even, the last term in the numerator is 1) s,
and the last term in the denominator is (— 1)is,; if n be odd, the
f
last term in the numerator is (—1)* s,, and the last term in the
1

denominator i§ (~1)T ¢ _,. If the angles a,p, ... are all equal,
the formula will coincide with that given in Art. 271.

274. 'We shall now prove formulee for the expansion of sin a
and cos a in series of powers of a.

We have, when n is a positive integer,

cos nf = cos™0 — (n—1) ————c0s8"*0 sin®0
. 1.2
n(n-1)(n-2)(n-3)
+
[4
Let nf =a; and suppose » to increase without limit, and let
0 so change that n may remain a positive integer and nf be always

equal to a; thus 6 must diminish without limit. The preceding
equation may be written

cos" *0 sin*d—......

a(a—) o™ sm
— 0 ——

a(a. 0)(a L20) {a— 30) e (51 0)

cos a = cos"f —




DE MOIVRE'S THEOREM. 217

Now when n inoreases without limit, and, therefore, § dimi-

nishes without limit, 9%0& equal to unity, and so is every power

of %0 up to (3101_0) ; also cos 6 is unity and sois every power of

cos @ up to cos™d (Art. 150). Hence the above formula becomes

_.1 _£_+£ 0.’
cosa= -—1.2 L%—-l:e'l-......
Also
sinn0=noos'-‘08in0—7-‘(n——g(ﬂ——z)oos"'0sin'0+ ......

thus sina=acos"'08i:o _a(a—a)éa—"ﬂ) cos™0 (si%ﬂ)'_'_

2

Hence, by supposing n to increase without limit, we obtain

sina= —9—'-+£ a7+
a=a l_3 L5-—-[7- ...... .

The results of this article are of the greatest importance ; we
. #hall make some remarks upon them in the next three articles.

275. It must be observed with respect to the formul® esta-
blished for the expansion of sin a and cos a, that a is the circular
measure of the angle considered; for it is only when an angle is
estimated in circular measure that s_n_;_ﬂ
nitely diminished. It is easy to obtain the requisite modification
; of the formulee when any other unit of angular measurement is
adopted. Thus, for example,

is unity wheun 6 is indefi-

a af

° o__ -—— ——
sin n’=a L3+l§ ceeee
where a is the circular measure of the angle of n°; thusa=1”—;:),
" and we have
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sin n’ =

ner 1 /nw +l n_1r 5
180~ [3 \180, @(180 o

.. 1/nnr 1 /nx)\*
Slmﬂarly cosn’=1- 2(180) +E(m --.. .....

276. The series for sin o and cos a are convergent for all
values of a.
(_l)u—l sn-l

[2n-1

numerical value of the ratio of the (n+1)® term to the »™ is
2

The n'® term in the series for sin a is ; hence the

o5 and whatever be the value of a we can take n so
2n (2n + 1)

a’
2n(2n+1)
shall be less than any assigned quantity; hence the series is con-
vergent (dlgebra, Art. 559).

large that for such value of » and all greater values

Similarly it may be shewn that the series for cos a is always
convergent.

277. The proof given in Art. 274 involves one point that
may not at first appear quite satisfactory. The (r+ 1)* term of
cos « is strictly

n(n=1)(n-2)...(n - 2r+l)

(-1y 2 0™ @ sin™ 0 ;
this we write in the form
. ,a(a—0)(a—26)...(a— 270 + 0) o sinf
1 2r ()

Now it is proved in Art. 150 that the limit of cos" ™4 is
unity, and also that the limit of (.si%O)" is unity; the only ques-
tion is whether the limit of

a (a—0)(a—26).. . (a— 270+ 0)
' [2r LZr
Jor all values of ». This is obviously true when ==1; that i
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the limit of = (a 0) 2 ; and we can shew by mductlon that the

required result is always true. For assume that
a(a—6)(a—26)...(a—2r6+6) o~
i B

where R diminishes without limit when 6 does so, so that the

+R

t
limit of the right-hand member is -l;—r ; introduce a new factor
a—2r0 -
Trel o thU

a(a—0)...(a—2rf) [ 29
[2r+1 {Lzr+R}(zr+1""2¢+1}
a'! Ra 2r0
“Ereit ol Btz A
. and when 6 diminishes without limit all the terms on the right-

'r+l
hand side vanish except i which is therefore the limit of the

[2
left-hand member. Similarly we can shew that when another
a—21'0—-0. . T o't
factor ———— is introduced the limit is ——— ; and so on.
2r+2 . [2r+2

278. The following example will shew how the series for
cos 6 may be practically useful. Suppose two sides @ and b of a
triangle are known, and the included angle C'; if C be a very
obtuse angle we can give a convenient expression for the third side
of the triangle.

For suppose 7 — 6 to be the circular measure of the angle C,
80 that 0 is very small; thus
&= a®+b* — 2ab cos C= a® + b* + 2ab cos 0

—a®+ 5"+ 2ab (1 - 5) approximately,

=(a+b)"—abd®

=G+ {1}
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Hence, by extracting the square root,

abf® .
c=(a+b) {1 - m} approximately.

EXAMPLES.

1. Extract 1:,he square root of cos 44 = ,/(-1) sin 44.
2. Find the values of (- 1)}.

3. Obtain the six values of (— 1).

4. Find the three values of {1+,/(- 1)}*.

5. Given _sm0 2165

o = 3166’ shew that 6 is nearly the circular

measure of 3°.

6. Given sin (%+0)='51, find approximately the value of

6, neglecting powers of § above the second.

ax’ ax®
7. If ta.nx_x+—l§-+ 5 +oeeeens
shew that
2n+1) 2n 20+ 1) 2n (2n—1) (2n-2)
Bgngy = (“1-_—;— L _( ) l4 Byt -ee
8. If 000t0=.a0+a,0'+a.0‘+...
1ew that
L @y (— 1)-—lao (_ 1). .
a’.——’—g-——ﬁ"—...‘i— l2n+l +———L2—”:,
ence find 0 cot 8 to four terms.
9. If secO=a,+ a0 +ab'+... +a, 6" +...
aew that
= %=1 _ Ton—e (G
a'sn_ Lg B + + L_2_71
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10. If cos 2a + ,/(— 1) sin 2a be substituted for @ in the ex-

pression , and similar quantities for b and ¢, and the

(a+b)(a+ c)
result reduced to the form A + B »/(=1), find the values of 4 and
B in terms of a, 3, y.
11. Shew that
{cos 0+ cos ¢ + ,/(—1)(sin 6 +sin ¢)}"
+ {cos 0 + cos ¢ — \/(— 1) (sin 6 + sin ¢)}"
= g+ (cos 0;¢)'006 n(02+ 4’)'

12. Shew that if =", and /(1 -¢")=nc-1,

c n
1+ccos€=§h(l + nax) <l +5).

13. Prove the following rule for finding the length of a
small circular arc; from eight times the chord of half the arc sub-
tract the chord of the whole arc, and one-third of the remainder
will give the length of the arc nearly.

14. From the identical equation
(z-b)(x—c) (:r— ¢)(z — a) (z: a)(xz—b) -1,
@ B@=0)  C-0f-0  Cc-aC-0)
deduce the following by assuming
« = co8 20 + ,/(— 1) sin 26,
and corresponding assumptions for @, b, and ¢;
sin (6 — B) sin (0 — )
sin (a = B)sin (a—) "2 0%
N sin (0 — ) sin (6 — a)
sin (8= ) sin (F—a)
sin (6 — a) sin (6 — B)
sin (y —a) sin (y - )

sin 2 (0 — B)

sin 2 (§—7)=0.
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XX. EXPANSIONS OF SOME TRIGONOMETRICAL
: FUNCTIONS.

279. Let « denote cos 6 +,/(— 1) sin @ ; then

1 .. .1 . _ < 4.
~=cosa+~/(—1)*' -cosO—J(——l)smG,
thus a:+l=2coso an,d w—-——-2,J(—1)sm0
also o {00504-‘,](— 1) sin0}"’=cosn0+,J(—l)sinn0,
1 1 1 o
- {c030+,,/(— l)sm0} cosnﬂ+,/(—l)smn0
= cos nf — J(—l)sxnno
thus "+ l = 2 cos nb, "a.nd’z'— i—-=2,/(—'1) sin 6.

‘We shall find this notation useful in the followmg investi-
gations,

280. 7o express cos™0 tnterms of cosines q/' multiples of 6
whmnwapoutwemteger e

2" cos™ = ::z:+1 =a" +m“" = n(n nin-1) “"-—1,-+...
x, zt 1.2 @ .

n(n-1) , 1 1 1
1.2 . ,,_, M.F_;+E,

Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but
one, and so on; thus we obtain

at"+1+n< "*’+w._,> n(n l)(a:"“ __4> e

but w"+$,=2cosn0, x“"’+a—;,,lq=2oos(n—2)0,andsoon; :
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therefore
2"‘008'0=eosn0+ncos(n—2)0+n(ln—2l) cos(n—4)0+...
+n(n—l) (n—r+1)m(“_2r)0+

e

The last term of the series on the right-hand side will take
different forms according as = is even or odd. In the expansion

of (a:+ :1;) by the binomial theorem there are n+1 terms; thus

) th

when 7 is even, there will be a middle term, namely the (g + l) ,
which is

n(n—1)...(e~4n+1) z:’;- _l;; that is, ™ (n=1)...(3n+ l).

4 o i
Hence, when = is even, the last term of 2*~'cos™d is
n(n—1)...(3n+1)
Agn

When 7 is odd suppose it = 2m+1; there are two middle

terms in the expansion of (x+%) , namely, the (m+1)* and
(m+2)®; their sum is

n(n—_l)...lz(ln-—m+1) (z+ )

1
; .

Hence when = is odd, the last term of 2" cos" 4 is

n{n-1)...3(n+3)
T(n=1) co.so.'

281. We shall find that sin” 6 can be expressed in terms of
cosines of multiples of @ if » be an even positive integer, and in
terms of sines of multiples of § if » be an odd positive integer;
this will appear in the following two articles.
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282. To express sin®0 in terms of cosines of multiples of 6,
when n 18 an even posin’ve integer.

. . - 1 n(n-—l) s 1
2 (- ])sm0 ( -=) =a"—na" M B R Rt

n(n-1) o 1)" I\ I\~
A N ( +mc( +(— p
Now rearrange the terms on the right-hand side, putting

together the first term and the last, the second and the last but
one, and so on; thus we obtain

"
sy n(n 1).. (;n+1)

bl
Therefore
221 (- 1)’ «in"@ = cos n0—n cos(n—2) 6+ — 2 (n 1) (cosn—4)6 —
o 1)”"(”‘1);"Lr_<”"“) cos (n—2r)0+ ...

+e 1),n('n l)l-_f%n+1)

283. To express sin® @ in terms of sines of multiples of 6
when 1 18 an odd positive integer.

'

n( NS ion 1\~ 1 nl-1)

2 —1’ = —_—) = — n-1 n-!_
R e R R R
nm-1), 1 11
- 1.2 x.&ﬁ+m.w,_l—;,.

Now rearrange the terms on the right-hand side, putting
together the first term and the last, the second and the last but
one, and 80 on; thus we obtain
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xu - l. —-n (zu—!__ —=3 n (n 1) (x._‘ )
@ &

In(n—1 n+3 1
(=17 |;)(n 1()+) z);

Lut - —2,](— 1) sin 6,

2 - =2,/ Dsin (a-2)6,

and so on; thérefore
n (n l)

(- 1) 5111"0 sinnf — nsin(n—2)0 + gin (n —-4) 6
_n(rn—1)(n-2) 2) : n(n l) .4(n+3) .
B in(n—6)0+...+(— 1) 3G-1) sin@.

284. If » be not a positive integer, the expressions for cos® §
and sin® 6 in terms of the cosines and sines of multiples of 6 are
| very complicated. For these we may refer to Peacock’s Algebra,
. Vol 1 pp. 435—440.

~ 285. In Art. 269 it is shewn that when n is a positive
* integer,

i cos nf = cos™d (n_ 1 cos"*@sin’f

|

| +n(n-1) (”;2) (nha)cos"‘esin‘G—,...;
sinee « 8in'@ =1 — cos’d, sin'd = (1 — cos’6)’,

nd 80 on, it is obvious that coszf can be expressed in terms of
ers of 0080 we will now give a direct investigation of this
expression.

286. To a—z;preas cosnd in a series of descending powers of
cos@ when n 18 a positive inleger.
Let x = cos + ,/(— 1) sin¥,
T. T. 15
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so that x+1=2ooso, andw“+—1—=2cosn0;
z a”
. ' % 1
now (I—z:c)(l—— =l-z(z+-—>+z’=l—-z(c—z),
z, x
where ¢=2 cosé.

Take the logarithms of both members; thus
log (1 — ) + log (1 —-f—c =log{l—2(c-2)};

2 2 2 2
therefore 2z +3 22"+ 322"+ ...+;+%;,+§-;,,+

—#lo=2)+ (o= + 3 (=2 + A (o= b

In this identily we may equate the coefficients of 2". On
the left-hand side the coefficient of 2* is %(m’+$); that is,

%cos nf; the coefficient of 2" on the right-hand side must be
obtained by picking out the coefficient of 2 from the expansion of
%% (c—<)" and of the terma which precede it.

The coefficient of 2" in 12" (c—2)"1is Z;
n n

—1 — )1
the coefficient of 2* in z ,Ec lz) is —nl i (n-1)¢"2;
. 2=, 1 (n-2)(n-3) ,_,
the coefficient of 3*in p is —5 ) Yy

and generally the coefficient of 2 in 2" (c—2)""is

n-—-r

(=1 (n=7)(n—r-1)...(n—2r+ l)c,_,,;

n—r |r
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n

Thus 2 oos 10 = (2 cos6)" — (2 cos O+ =) (3 con s
nn—r—-1)(n—r-2)...(n—2r+1)
lz

The series on the right hand is to continue so long as the
powers of 2 cos f are not negative.

v+ (1) (2cos )™ +...

287. It is obvious either from the above series or from that
in Art. 269, that when = is an even positive integer cos nf can be
arranged in a series of powers of sin®6. Thus we may assume in
this case

cosnf=1+4, 400+ 4,8in*0 + 44800 + ... + 4, sin"6.

It is clear that the first term must be unity, because when
0=0 we have sin =0 and cosnf=1. Now we shall adopt an
indirect method of determining the values of the coefficients
4, A,,...... Change 0 into 0+ 4 ; thus cosnf becomes

cos nf cos nk — siu nf sin nk;

now put for cosnk and sinwh their values in terms of nk by
Art. 274 ; thus the above expression becomes
»'R'

2

Again in the term 4, sin7 0 change 6 into 6+4; we thus get
4, (sin 0 cos k + cos 0 sin A)”, that is,

cos nf + &c.

cos nf — nh sin nf —

A, (sin-0 + h cos 0—%2sin0— I A
. If this be expanded in powers of A the term involving A* is
A, {%21;—1_) sin™~*0 cos®d — r sin” 0} B,
Equate the coefficients of A*; thus

£ .
-5 cos nf = 4, {cos"d - sin’6} + 4,{2 . 3 sin* cos’d ~ 2sin*}

o (2 —
o+ A,,{ig'?ifg sin*"~* cos*d — r sin"O} 4.

15—2
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Now put 1 —sin*6 for cos®6 on the right-hand side; then the
term containing sin™ @ will be

2r(2r-1 2r+2) (2r+ 1
_A"{ g : 2—)+r}+A."( 1)(2 );

and this coefficient must be equal to that of sin* 6 in the series

3 2
for —% cos 10, that is, to—% 4, ; thus

n!
5“4» =24, -4, (r+1)(2r+1),

_ n® — (2r)*

therefore 4, .= “@rAD) @Y

By means of this law we may form the coefficients in succes-
sion; we may consider 4,=1; then
nl 2
34="1.3%

_ nt-2 7' (n* - 27)
d=—g g4~ T1.2.3.¢°

4,=-

and so on.

Hence, finally,
_n L (- ’) n’(n’—2’)(n’—4f) . e
cosnf=1 I zs in’f+ ——— L G sin®0+ ...

In the above process by equating the coefficients of & we shall
obtain

—nsinnf =4 2sin6 cosd+ 4,4 sin’f cos6+..+4,, 2rsin” ' ccsb+...

Substitute the values of 4, 4,...; thus

sin nf = noosﬁ{sm@—il_g— '0+@Llfn—4z)s }

When # is odd, we may start by assuming
sin nf =4, sin 0 + 4,sin"0 + 4,8in°0 + ... + 4,sIn"0;
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then, by proceeding as before, we shall find

sinn0=nsin0—n—(n’——l)sin’0+ﬂn’_ !f)gﬂ—’_—y)sin’ﬂ

(3 5
cos nl = 0080{1— 1’ 3 ,0+('n—-1)L(n 3’) }

288. In the four formule obtained in the preceding article

change 6 into -9 ; thus we have, if n be an even integer,

2

-1 goosn0=l—£’oos’9+7—zwcos‘0-

(-1 . =
- 1)’ mnnO—nsmo{cosO——L;,:— 9477 )ﬁn =4 oo .};
and if = be an odd integer, .

n-1 s __ 8 __ 2 __ 99

(~1) % cos nf =n cosd _7_z(n—L31) cos’0 + 7&%’”—3) cos"0 —
(—1)?sinn0=sin0 {1 _nl’_—z_l cos’0+(l—_—%_in——i’)cos‘0— }

MISCELLANEOUS EXAMPLES.

Expand (sin 6)**** in terms of cosines of multiples of 6.
Expand (sin6)!**' in terms of sines of multiples of 6.
Expand (cos6)™ in terms of cosines of multiples of 6.

A

Prove that in any triangle

a’cos § (B— C)+b’cos,}(0 A)+c'cos}!tl?z

cosd (B +C) cos} (C+4)  cos}(4d+B)
=2 (ab + be + ca).

5. From the angles of a triangle ABC, perpendiculars AD,
BE, CF are let fall upon the opposite sides; prove that

asin (BAD ~ CAD) + bsin (CBE ~ ABE) + csin (ACF— BCF) =0.
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6. From A, B draw AD, BD perpendiculars respectively
to AC, BC. If p be the radius of the circle inscribed in 48D, then

AB=p (sec 4 +sec B+ tan 4 + tan B).

7. Three equal circles of radius a touch each other; shew
that the area of the space between them is

(23

8. The area of a regular polygon inscribed in a circle is a
geometric mean between the areas of an inscribed and of a
circumscribed regular polygon of half the number of sides.

9. The area of a regular polygon circumscribed about a circle
is an harmonic mean between the areas of an inscribed regular
polygon of the same number of sides, and of a circumscribed
regular polygon of half that number.

10. 1If the side of a pentagon inscribed in a circle be ¢, the

o c,J(5 + /5)
radius —J

11. Three circles whose radii are a, d, ¢ touch each other
externally ; prove that the tangents at the points of contact meet
in a point whose distance from any one of them is

abe >§
(a.+ b+ec)

12. The sides taken in order of a quadrilateral whose opposite
angles are supplementary are 3, 3, 4, 4; find the area and the
radii of the inscribed and circumscribed circles.

13. The area of a regular polygon inscribed in a circle is to
that of the circumsecribed polygon of the same number of sides as
3 to 4; find the number of sides.

14. - If the diameters of three circles which touch each other
be a, b, ¢, and a, B, y be the chords of the arcs between the points
of contact in each, shew that

w65 6+2) G2
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. tan 6\ 2 - .
15. Shew that the limit of (—0—>3, when 6 is indefinitely
diminighed, is e.
16. The two diagonals of a quadrilateral figure whose oppo-

site angles are supplementary cannot be equal unless some one of
the sides be equal to the opposite one.

17. Two circles whose radii are @ and b cut one another at
an angle y; shew that the length of the common chord is

2ab sin y
V(@' + 2ab cos y + b%)°

18. The radius of the circle inscribed in a triangle can never
be greater than half the radius of the circle described about the
triangle.

XXI. EXPONENTIAL VALUES OF THE COSINE
AND SINE

289. If we expand ¢~ and ¢™ by the exponential theorem
we obtain

:c' kx* k‘x
T

Va4 Ic‘a:' k

7(6“ —e ™M)=+ @ |§ + 7

If it were possible to make &*=—1, so that =1, ,=—1,
and, so on, then the right-hand member of the first equation
would be the expansion of cosz, and the right-hand member of
the second equation would be the expansion of sinz (see Art.
274). Hence we are led to these results,

AR L eV — g* V(Y
T

2(e""+e“") 1+

2
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The meaning of these equations is simply this; if we expand
eVi™" and V7', by the exponential theorem, in the same way
as if ,/(— 1) were a real quantity, we shall by the above formule
obtain the known series for cosz and sin .

These expressions for cos 2 and sin « are called the exponential
values of the cosine and sine.

290. From the exponential values of the cosine and sine we
may deduce similar values for the other trigonometrical functions.
Thus, for example,

POV S S N )
T IEDEVTE ey

tan

‘We shall now use the exponential values in establishing certain
results,

291. To expand 0 in powers of tan 6.

OV =1 _ g 8V(-1)
By Art. 290, J(-1)tan 6= 5o=—ver;

1+,/(-1)tan 6  eoV-D

. = — 20411
therefore 1= /(—1)tand ~ o0 €20/(-1),

Take the logarithms of both members; thus
20 /(- 1) =log {1 +,/(— 1) tan 6} —log {1 - ,/(— 1) tan 6}
—2 (- 1).{mo--§tan'o + 1 tan'0 }

therefore 0= tan&—% tan®6 + % tan®f — ...

This is called Gregory’s Series.
Let tan 6 = z, se that 6 = tan™'z;

-1, 1 1
thus tan x_z—gz'+3z‘—...
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292. The preceding investigation is unsatisfactory, because it
gives no indication of the extent to which the result may be relied
upon as arithmetically intelligible and true. The n'* term of the
(__ 1)-— 1 x!-—l

; hence the numerical value of the ratio of
2n-1
2n+1
convergent if z be less than unity (4lgebra, Art. 559). The series
is also convergent when « is equal to unity (4lgebra, Art. 558).
For values of x greater than unity the series is not convergent,
and is therefore not arithmetically intelligible.

the (n +1)®term to the n™is «*; therefore the series is

293. Moreover tan™'z has an infinite number of values corre-
sponding to the same value of z, so that one member of what
appears as an equation admits of more values than the other;
this point is left unexplained in the investigation which has been
given.

The subject of series cannot be adequately treated without
wing the Differential Calculus. The student must therefore be
referred to treatises on that subject for a satisfactory demonstra-
tion of Gregory’s Series. It is there shewn that so long as 6 lies

between —% and-z, the result 6= tané —-% tan®6 + % tan®6 — ...
is absolutely true. (See Differential Calculus, Chapter VIL.)

T

T
i and e then

If, however, 6 = nr + ¢, where ¢ lies between —
1 8 l 5
¢=tan¢—§tan ¢+—5-tan b—...;
. 1, ., 1, ,
that is, 0—-mr=tan0—§ tan 0+5tan 0—...

m™

294. In Gregory’s Series put 6 = g then since tan{: 1,

=1—-Z+

-t

L,
7

iy
QoI -
| -t
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This series might be used for calculating the value of =; but
it is very slowly convergent, so that a large number of terms
would have to be taken to calculate = to a close approximation.

295. Euler's Sertes.

1.1
.1 1 273 -
ta.n’§+ta.n '§=tan‘1———1=tan'1=£,
3
T 1 1 1
thus =g —gp*t5m—r @t

296. Machin's Series. 'We shall first shew that

T_ -1 l -1 1
2
1 4 S 10 5
_|—= l——.: —‘— —
2tan5tan1lta.n24ta12,
~25
10
1 5 12 120
-1 — -1 7 _ -1 — —l___
4 tan -5—2tan 12._1;an —1__22_““1 1i9*
144

Hence 4 tan™ 1 is a little greater than = 75 Suppose

1 =
12 _ 7 -1
4 tan -5—4+tan z,
120 L\ l+z
then llg_ta (4+tan Z)—‘l—_z,

1

from this we find ®=g39-
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T_ _,l_ _,_71_
Therefore Z—4tan 5 tan 939

_4{1 1 .1 1. }
I G - P L O

{L _r ., 1 1 }
1239 - 3(239)° T 5(239)°  7T(239y T

297. It may be shewn that

1 1 1
-1 — —l___— _‘_<0
tan™ ooy =tan” yp—tan 545
T4 tan' ) tan-t Ll a1
thus 4_‘ii:an 5 tan 70+1;1\n 99"

The series for tan“;‘.%and ta.n“g% are convenient, for pur-

poses of numerical calculation.

The value of = has been calculated by two computers inde-
pendently to 440 places of decimals (see Lady's and Gentleman’s
Diary for 1854, page 70, and for 1855, page 86).

298. Given sinx=nsin (X +a), required to expand x in

powers of n.

Here @V gV = g [l W _ et ayily
therefore VN ] = {gf et oVl VY,
therefore & VEN ] —ne* V) = 1 — ne=tVY,

1 —ne2vted
1 — nevn?

therefore 2 \J(—1)=1log {1 —ne~*v"} —log {1 — ne® ™} .

2 3
=afevi) — oV} 4 % (VY — gt} 4 % (Vg e} 4

therefore eV =

¢ ]
therefore x=naina+%sin2a+

nl

3mn3a+ ......
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As an example, suppose a =7 — 2z, then n=1; thus

x=sin 2z — % sin 4z + -;—.sin 6x — %sin 8x+...

259. Given tan x =n tany, required to find a series for X.
EVED _ W) N e
e:V(—l) + e—av‘—l) - neyV(—x) + eIVt b

e Vit 1 eV _ 1

P e R e P
(1+n)eV+1—n
(I-n)e*V+1+n

1 + me V) 1-

n
= W) x m=
¢ 1T gV Where m=y70s

Here

therefore

therefore v~ =

therefore
2 J(-1)=2y /(- 1) +log {1 + me"’"«/""’} —log {1 + me™v™1}
=92y J(~ 1) = m {e¥V-) _ 50} o {ela\/(—l) PV [

therefore 2=y —msin 2y+,77sin 4y—%s'm 6y + ...

300. To find the coefficient of x* in the expansion of e** cos bx
in powers of x.

Here ¢* cos ba = § ¢ [V~ + aV1-1} = J glo+ot-Hle 4. L glo-swi-nl,

Expand these two exponential expressions by the exponential
theorem ; then the coefficient of " is

5 [+ 0 V- DY +a=b Y1)

s {3+ o0+ - Fveof]

Now supposei:.—_-oosa, :—’_=sin9, s0 that,r’=a'+b’.
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Thus the coefficient of 2* becomes

(a’2+é’). [{cos0 + J(—- 1) sin 0}-+ {cos 0~ ~/(" 1) sinG}‘]

(a +b')’

[cos n + J(— 1) sin 7 + cos n8 — /(- 1) sin n6]

(a Cb’)’cos nh.

301. The series in Art. 298 may sometimes be of assistance
in the solution of triangles.

We have sinB:SsinA:ésin(B-&-C);
henee, by the formula,

B-ésln0+ ,sm20+ b z8in 3C + ..

If b be less than a the series is convergent, and if g-,be a small

fraction a few terms of this series may give B to a sufficient degree
of approximation ; the series gives the circular measure of B, and
the measure in degrees or minutes or seconds may be deduced by
Art. 22.

302. Given two sides of a triangle and the included angle, to
find a series for the logarithm of the third side.
Suppose a and b the given sides and C the circular measure of
the given angle; suppose b less than a, we have
¢*=a’ + b*— 2ab cos ' = a® + b* — ab {e?V 1+ ¢V}
={a — be®V} {a — be~oVEN}

= a’{l - ée"\""’} { 1 _b e“’\"“’}
. o a
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thus 2logc=2log &+ log {1 —fecv‘-‘)} +log {1 ——b-e“"‘\/‘“’}

=2loga—— 16‘\/‘“"+ '\/“"} - 2% { A AREE c""'\ﬂ"’} .

s :
therefore logc=loga—%cos0—§b‘?cos20’—§b;cos 3C-...

This series is convergent since b is supposed less than a, and
if % be small a few terms may give logc to a sufficient degree

of approximation.

EXAMPLES.

1. Apply the exponential values of the sine and cosine to
shew that

sin 4 —cotA
T—cosd 32"

2. If the sides of a right-angled triangle be 49 and 51, shew
that the angles opposite to them are 43° 51" 15” and 46° 8" 45”
nearly.

3. If the angle C of a triangle be given, and the other two
adjacent sides a, b be nearly equal, shew that the other angles are
nearly equal to

,,0180°ab ¢ 1/a—b 0>
900~ w{a+b ot3-3(a70%%3 }

4. In any triangle, if 4 — B be small compared with C,

2
A= B+2a—b-smB+( p b) sin 2B nearly.

5. If a and b be the sides of a plane triangle, 4 and B the
opposite angles, then will log b —log @

=co8 24 —cos 2B +%(cos4A—cos4B)+%(cos 64~cos6B)+ ...



8.
9.

10.

11
12.

{sin (a —
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! + ! +—+
1.375.779.11"

If A + B /(- 1) =log {m +n /(- 1)}, shew that

Shew that ;8’ =

tsnB:;'in, and 24 =log (n* + m*).

Reduce cos {0 + ¢ ,/(— 1)} to the form a + 8 /(- 1).
Reduce sin {# + ¢ ,/(— 1)} to the form a + 8 /(- 1).
Reduce {a + b \/(— l)}'T'l?F)to the form a + 8 /(- 1).
Reduce {a+b,/(— 1)+ ¢Vl to the form a+8,/(—1).

Prove that

6) + ¢**¥-" gin G}" =sin"" a {sin (a — nf) + **v-" sin nb}.

XXII. SUMMATION OF TRIGONOMETRICAL

SERIES.

303. 7o find the sum of the sines of a series of angles which
are in arithmetical progression.

Let the proposed series consist of the following n terms,
sin a +sin (a + B) +sin (& + 28) + ... +sin {a + (n—1) B}.
‘We have

cos (a—-%ﬁ)—cos(a+-‘12ﬂ)=2sin%.ﬁsin.a,

cos(a+%ﬂ>—oos(a+gﬁ)=2siu%Bnin(a+/3),

'oos(a+g,8)-cos(a+gﬁ> = 2sin L Bsin (a + 26),

....................................
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p) 2sm23nn{¢+(n 1)8}.

Let S denote the sum of the proposed series ; then, by addition,

08 (=3 B)-con (a+
Szcos(a—%ﬁ)—cos(a+

.1
9 —
.,xm2ﬁ

("5 £)iny

sin )B

"1 g)=25sin3B;

2n2— lﬁ)

therefore

304. To find the sum of the cosines of a series of angles
which are in arithmetical progression.

Let the proposed series consist of the following = terms,

cos a + co8 (a + ) +cos (a+2B) + ... +cos{a+ (n —1) 8}

‘We have
sin(a+%ﬁ)-—sin a—%ﬁ)=2sin%ﬂcosa,
sin(a+gﬂ)—sin(aw%B)=2sin%ﬁcos(a+/3),

sin a+gﬂ)—sin(a+gﬁ)=2sip%ﬁcog(a+2ﬁ),

sm(a+——ﬁ) sm(a+ “- 3,3) 2sm2/3<;os{a+(n 1)}
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Let S denote the proposed series; then, by addition,

sin a+2”2‘lﬁ)-sin( —%B)=2Ssin%,8;

sin (a + 221 ) sin (o - 8)
2@%}3
=oos(a+ nTTlB)sin?zE

si.n%ﬁ

therefore S=

-

241

305. The series in Art. 304 may be deduced from that in

Art. 303 by writing « +§ for a; the sums of these series are re-

quired so often in the solution of problems, that the student
should be able to quote them from memory. As we have just
intimated, if the first result be known it is sufficient, since the
second can be obtained from the first by changing sine into cosine
in the first factor of the numerator. It will be seen that the
results are obviously correct when n =1, and when n=2; thus
there is a test of the accuracy with which the formule are quoted.
The cases in which 8 =a may be specially noticed ; we have then

n+l
sin —— amn"y‘2
gina +8in2a+sin3a+... +sinna= ,
. . @
sin &
2
n+1 na
s
cosa+co82a+co83a+... +cosna=
. @
sin 5

306. We may now deduce the sum of the following n terms:
sin @ —sin (a + B) +sin (a +2B) - ... + (-~ 1)*'sin{a + (n - 1) B}.

T.T.

16

U,
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This series may be written
sine +sin (a+ B +7)+sin (a+ 2B+ 2m)+... +sin{a + (n-1)(B+m)}-

We have then only to change B into 8+ in the result of
Art. 303.

(n— l)(,3+ w)} n(B+1r)

sin{a +

Hence the required sum is ﬁ + .
ks

sin

v

Similarly .
cosa—cos (a+ ) +cos (a+ 28) — ... + (- 1)*™ cos {a + (n—1)B}
for @DEEN g 262

ﬂ+7r

sm-——

Ccos

307. To find the sum of the following n terms.

cosec & + cosec 2 + cosec 4x + cosec 8% + ... + cosee 2" ' a.

We have cosec & = cob ; —cot @,

cosec 2 = cot & — cot 2z,

.....................

cosec 2" a = cot 2" " —cot 2" .
Let S denote the proposed series ; then, by addition,

S=cot ; —cot 2" 'a,

308. o ﬁnd the sum of the following n terms.

1 1 1 z
tanz+5 tan2 +2,tan2,+ +2__,ta.n—27,1.



SUMMATION OF TRIGONOMETRICAL SERIES. 243

‘We have tan x=cot z— 2 cot 2z,

1 z 1 x
X 2tan§—§cot-2-cota:,
1 z 1 z 1 x
plang =gotg—goty,
1 x 1 1
ETTIM 2-—1 2-—1 5a=1 €0t 5o 2.— 2--: cot o= 2--: .

Let § denote the proposed series; then, by addition,

| 8= 2,1_, ot srer— 2 oot 22,
The term 21, cot2,__ = cosﬂ B in B’ where B=%_,; if we

suppose 2 to increase indefinitely, cos 8=1, and ﬁ =1
Thus the limit of the proposed series, when n is indefinitely-

increased, is é—2cot2a:.

309. To find the sum of the following n terms.
sin a+csin(a + B) + ¢*sin (a +2B) + ... + ¢*'sinfa + (n - 1) B}.

Let S denote the proposed series; substitute for the sines
their exponential values, and let % stand for /(- 1); thus

2kS = e°k + ce@ B + cle(at2y | 4 N1 elatnB-B)k
—e-k_co-(Bk _Sg-(tIh_ _n-le-(a+nf-Blk,

‘We have now two geometrical progressions; thus
1 —cnenfk 1 —cne-nbk
—e-

2kS = ,,.1; o ey
fl_e—ai_c{c(c—ﬂ}l_e—(a.—p)h}_cu{c(a-i-np)k_c-(¢.+nﬁ)k}+cﬂ+l{e(ﬂ3+¢"ﬂ)3_e—(’lﬁﬂ M}
—c(P e )+

16—2
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therefore

gin a — ¢ sin (e — B) — ¢*sin (a + nf) + ¢ "“sm{a+(n-l)ﬁ}.

§= T-2ccos B+

If ¢ be less than unity, then when % is indefinitely increased
¢* and ¢**’ diminish without limit; hence if ¢ be less than unity,
the limit of the proposed series when 7 is indefinitely increased is

8in a — ¢sin (a — B)
1—-2ccos B +¢'

[N

Similarly we can shew that
cosa+ ccos (a+B)+c*cos(a+2B) + ... +c" ' oor{a + (n—1)B}
_gcosa-— ccos(a—pB) —c"cos (a+nB)+¢** cosfa+(n—1)B}
1-2ccosB+c* :
This result may also be obtained from the preceding by chang-

. . w . .
ing ainto a+ 3. If ¢ be less than unity the limit ofthe proposed

series, when # is indefinitely inereased, is

cosa — ¢ cos (a — B)
1—-2ccos B+¢* °

310. To sum the infinite series

csm(a+ﬁ)+ ¢ sm(a+2/3)+ 5 8in (a + 3+ ...

3

Let 'S denote the proposed series; substitute for the sines
their exponential values, and let & stand for ,/(— 1) ; thus

%S = og(c-rﬂ)t.;.l_ ela+38)k Eg(l-raﬂ)"-;-
— ca—{a+BW _ 1,"_'_2 o-(a+38%_ E;e-mw_

~ ok foof 1} — o=k {e ™ 1},
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Now ef*=cos B+ksinfB, e-Px=cosf—ksinpf;
thus 28 = 20088 +Xla+osing) _ gcos—k(a +osinf) _ (gak — g—ak)
= 0008 {ga+osinf) _ g~Ma+esing)} _ 9% gin a;
therefore §=ec¢co8Bgin (a+uinﬁ)-—5in o

Similarly it may be shewn that the sum of the infinite series
¢ (
coou(a+ﬁ}+1—.200!(¢+Zﬂ)+l-—§cos(¢+3ﬂ)+...

is €°°088 co8 (a + ¢ 8in ) — cos a.

This result may also be obtained from the preceding by chang-
ing a into a+ %..

311. We shall not selve any more examples of the summa-
tion of Trigonometrical Series; the student will find more exercise
of this kind in the collection of examples for practice. In
many cases the summation is effected by the artifice which is
employed in Arts. 307, 308, by which each term of the pro-
posed series is resolved into the difference of two terms. Practice
alone will give the student readiness in effecting such transforma-
tions. If he camnot discover the mecessary mode of resolution in
any example, he will find no difficulty in recognising it when
he sees the result of the summation given in the collection of

answers. Thus, for example, required the sum of the following
n terms: '

sec a sec 2a + see 2a sec 3a + sec 3a sec 4a + ... +8ec nasec(n + 1) a
The result is cosec a {tan (n + 1) a—tana}; and by putting
n =1 this suggests the necessary transformation, namely,
8ec a sec 2a = cosec a {tan 2a — tan a};
then, sec 2asec 3a = cosec a {tan 3a — tan 2a},

and so -on.
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312. The student who is acquainted with the Differential
and Integral Calculus, will be able to deduce numerous series
from known series by differentiation or integration; and when the
results are obtained they can frequently be established by more
elementary methods. Thus, for example, differentiate both mern-
bers of the equality established in Art. 308; then

x

1 1
sec:c+2,sec ? 4 5 sect +..._+—27,:;sec’2—.—_—,

272 2
1° n~1

cosec” 2" & + 4 cosec® 2.

22»—!

Again in- Art. 309 put a= 8; thus
sina
1-2¢ccosa+c®

=sina + ¢ sin 2e + ¢*sin 3a + ¢*sin 4o+ ...
Integrate with respect to a; thus

- llog(l —2¢cosa + c’) =cos a + gcos2a.+0—’cos.'.’m.+°-‘icos4;0.+'.
2¢ 2 3 4 o

" *No constant is required; for when a is zero both sides ace
equal.

EXAMPLES.

1. Find the sum of = terms of ‘the series
sin® a +sin® (a + B) +sin”(a + 2B) + ...
2. Find the sum of n terms of the series
sin’a + sin® (@ + B) +sin® (a + 28) + ...
3. Find the ‘sum of n terms of the series
cos* a + cos* (a + B) + e0s* (a + 28) + ...
4. Shew that

sin 0 +8in 30 + sin 50 + ... tontefms
cos 0 +cos 30 + cos 50 + ... to » terms *

tan nf =
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5. Sum to n terms the series )
cos 0 cos (0 + a) + cos (0 + a)cos (6 + 2a) + cos(6 + 2a) cos (§ + 3a) + ...
6. Shew that

sin 6 — sin 20 + sin 36 — ... to n terms _
080 —cos 20+ cos 30— ... to m terms

n+1(1r+o)

7. Sum to n terms the series
sin (n+ 1)@ cos § +sin (n+ 2) fcos 20 + ...

8. Sum to » terms the series
sin a sin 2a + sin 2a 8in 3a + 8in 3a sin 4a + ...
and thence deduce the sum to n terms of the series
1.2+42.3+3.4+...

9., Sum to n terms the series
sin 308in @ + sin 60 sin 20 + sin 120 sin 46 + ...

Sum to infinity the following series contained in the examples
from 10 to 16 inclusive:

10, cos 0.+ 00082045 2oc530+cols§ocos40+...‘
1L auo—%+ﬂ£f_

12. 1—%+MT440—;..

13. 2'c030+%coa’0+§cos’0+gcos‘0+...

14. sin00030+8in210'0208’0+8in310;08'0+

16, 6in0+ 520 00820+ 52 Poos 30+ ...

6
Shew that cosﬁ—%cos20+%oos30—... =log (2 cos §)
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17. Shew that cos 260 + %cos 60+%coa 106+...= % log (cot 6).

18. ' Shew that

. 2*sin20 2’sin 30 - (cosec 0
xsin 6 — + —...=cot
2 3 x

+cot0).
- 19. Shew that
' 0 [ gin 2
logcos0+logoos§+logoos?+...=log<—20— .

Sum the following series to # terms contained in the exam-
ples from 20 to 33 inclusive:

20, sino(sin %)"+2sin9(sin 9)'+ tin§ (sin Q)'+'

2 4 8
" g 0 8 o6 o
21. ténﬁsec0+tanzsec§ + tan geecg -

22. cot 6 cosec 6 + 2 cot 26 cosec 20 + 2° cat 2°6 cosec 20 + ...

23 1 + 1 + 1 +
" Sn0sn20  sn20¢sndd  sn3fsmdd
24 1 __, 1 1
“* §in6cos20 " cos20sin30  sin30cosdf
1 1 1
-1 -1 -1
25, tanT o ettty
-1 -1 fd -1 fd
26. tan~'z+ tan —~——1+1.2.x’+tan —————1_'_2’3.1,-&...

27. sinas_il;3a+sin£sin -3f+ sin 2£,',sin %-‘:+

2 2
1° 1 1
28. cos 6 + cos 30 +00s0+0050 +ooso+oos?0+"'
2. sin 0 sin 26 sin 36

cos 20 + cos 8 +cos4=0+cos0 cos 60 +cosf
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sin 0 3 8in 30 3*sin 3° 0

80 9ot T3 20m30 T+ 200330

31, cot™ (2a™' +a) +cot™ (2a¢" + 3a) + cot™ (247" + 6a)
+cot™ (27 +10a) + ...

32. %sec0+2l,sec0sec20+2l,secosec20m2’0+

1

33. 1logtan20+ g logtan 20+

8
2,logtun2 0+...

34. An equilateral polygon is inseribed in a circle and from
any point in the eircumference chords are drawn to the angular
points; find the sum of the squares of the chords and the sum of
the fourth powers of the chords. :

35. Circles are inscribed in triangles, whose bases are the
sides of a regular polygon of 7 sides, and whose vertices lie in
one of the angular peirtts; shew that the sum of the radii of the
circles is

2r (1 —nsin? ;'—”),

where 7 is the radius of the eircle circumscribing the polygon.

36. Circles are inscribed in triangles whose bases are the
gides of a regular polygon of % sides and whose vertices lie in one
of the angular points; shew that the sum of the areas of the
circles is

e T [A . m—4
L6t sin® & {Goin® 52+

where 7 is the radius of the circle circumseribing the polygon.

37. Shew that if » be a positive integer
(n+1)nsind +n(m—1)sin 20 +(n—1)(n— 2) sin 36 +...+2. 1 sin nb

_n(n+8) 6 1 ,0{ 30 2n +3
== coti—zcosecﬁ.cos—é—cos 3 0}.
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XXIII. RESOLUTION OF TRIGONOMETRICAL
EXPRESSIONS INTO FACTORS.

313. It is known from treatises on the Theory of Equations
that the expression " —1, where n is a positive integer, can be
resolved into n factors, each of the form = —a, where a is either
a real quantity or an expression of the form «+8,/(~1), where
a and B are real; and there is only one such set of factors. We
proceed now to resolve the expression "—1, and seme similar
expressions, into component factors. The factors of the expression
2" —1 are found by solving the equation &"—1=0; every root of
the equation @ determines one factor of the expression, namely
% —a.

314. To resolve x"'—-l_into JSactors, )

i

. Ore . 2rr . .
The expression cos * J(=1)sin — , where 7 is any in-
n

teger, is a root of the equation #*=1; for the n* power of this
expression is by De Moivre’s Theorem cos 2rx +,/(—1)sin 2rm,
that is 1. First suppose # even. If we put r=0 we obtain a

real root 1, and the corresponding factor is x—1; if we put r=g
we obtain a real root —1, and the corresponding factor is = + 1.
If we-put for » in succession the values 1, 2, 3, ... "—2"—-1 we

obtain 7 — 2 additional roots, since each value of r gives rise to
two roots. These roots are all different, for the angles are less

than 7 and all different, and thus 0082_;‘1" cannot have two co-
incident values,

Theréfore - & =1l=(@-1)=z+1)P,



RESOLUTION OF TRIGONOMETRICAL EXPRESSIONS, &ec. 251
where P is the product of n —2 factors obtained by ascribing to r

in succession the values 1, 2, 3, 5_ 1 in the expression

2rr . 2rm
-a:—oos—’; vJ(—l)sm—ﬂ—.
The two factors

2rm . 2rm 2rm . 2rr
x—cosT—J(—l)mnT, andx—wsT+J(—l)slnT,

. produce by multiplication the possible quadratic factor

(.1: —cos 22)’+ sin® 2rm , thatis, «*—2xcos 2rm +1.
n n n

Hence when 7 is even

z’—l=(a:—1)(w+1)(:v’—2mcosgf+l><x’—2xcos;4—1:+1)...
{x’ 2xcos( )w }{a:’—-Z.moosm 2)7 } (1)

Secondly, suppose % odd. The only real root of #*=1 is
now 1; the other n—1 roots are obtained by giving to » in suc-

cession the values 1, 2, 3, ... %—l in the expression

2rr . 2rw
CcOo8 n—*J('— I)Bln—n—. .
Hence when 7 is odd

a:“—l=(:c—1)'(1’—2mcos2~7r+l><x’—2wcos%+l>... |
{:v' 2zcos( "3) }{x’ 2wcos(n;l)’r+l}...(2).

315. To resolve x*+1 info factors.

1r & ,/(—1)sin

any integer, is & root of the equation z"= - 1; for the ' power

r+1

m, where r is

The expresslon cos
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of this expression is cos (2r+1)7w=,/(~1)sin (27 + 1), by De
Moivre’s Theorem, that is, —1. First, suppose » even; there is no
real root of the equation 2"=—1; the n roots.are all imaginary,
and are found by giving to # in succession the values 0, 1, 2, 3, .

@r+l)= +])1r w/(=1)sin 2r+l

-§ -1, in the expression cos ———

The two factors, z—ooszilr—,\/(— 1)sin

L)

2r+1
n

I+l +,,/(— l)sm 1 '

produce by multiplication the posmble quadratic factor

1 ]
(a:—eos2%lr) +sin’—2—r”—1:-, that is, 2* - 2xoos2’—+lr+1.

and z— cos

‘ Hence when 7 is even

L+l= (a:’—?a:cos +1)( —2zoos——+l>(x’—2xcos 1)
(z'—2:cooa—_;:——-u-+ 1),(:6'—2:6005% 'r+1)...(1).

Secondly, suppose n odd. The only real root of #"=-1 is
—1; the other » —1 roots are obtained by giving to r in succes-

sion the values 0, 1, 2, 3, ... * i 3,

== 1)sin

in the expression

(2r+l)1r (2r+ )=
n

Hence when » is odd

o +l= (w+1)(a:’ 22008 +1)(a:' 2008 2T 1)

...(a:’—2xoos n—4
n

316. The four formule established in the two preceding
articles are identically true; we may deduce many particular
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results by supposing particular values assigned to . Thus in (1)
of Art. 314, divide both sides by 2 —1; the quotient on the left-
hand side will be 2™ +2™*+...+z+1. Now put x=1; thus
when n ts even

. - -9
n=2‘(l—cos2—")(1—cos4—w)...(l—eos”—4 )(l—oos’:w);
n n n n
and by extracting the square root ‘
20 . n-4 n—2

n-1
T e I s AT n—= s B4
Jn=2 Sin 28 —x .. sin —— wsin - ... (1).

The positive sign of the radical must be taken on the left-
hand side, because the right-hand side is obviously positive.

Again, in (2) of Art. 314, divide both sides by z—1, and
afterwards put =1; thus when n s odd

n=2-";“l(1—cos 27‘”.X1—cos%)...(l—t,oszzis )(I—cos’%lvr 5

and by extracting the square root,

e . w27, n-3 . n-1
~/n=2 sxn;bsln;’-...mn-—%‘——ram—%r ...... (2).

Again, in (1) of Ast. 315, put =1 ; thus when n s even

H ' - -1
2 =2’(1 —oosg)(l —co8 37”)(1 — o8 7'731)(1—008”7 1r);

‘and by extracting the square root,
n-1 '
vz .. T . 3 . n—-3 . n—1
1=2 Sing_sin ... 80 5~ wein o—....... (3).

Again, in (2) of Art. 315, put @=1; thus when n is odd

' = y - -2
2=2’(l-—cos£>(l —eos?nlr)...(l—cosﬁgvr)(l —cos’—‘;—— r) ;
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and by extracting the square root,

u-1
,.1r.3_1r.n—4.n—2
| 1=2 sin o sin 7 ... 8i0 —- 7 sin —-—~ Toeoan(4).
Four other results may apparently be deduced from the four

formule of the two preceding articles by putting # =—1; but it
will be found on trial that these results do not differ really from
those already deduced. Thus, for example, in (1) of Art. 314,
divide both sides by x+ 1, afterwards put z=-1, and extract
the square root; thus when n is even

= 2r mn—4 n—2

Nr=2" cos—cos —... cos —  cos LH
n n 2n 2n

this however is the same result as that in (1) of the present arti-

cle, the factors on the right-hand side being merely differently
arranged ; for

T . n-2 2 n—4
cos—=8in ——m cos—=sin——m, .
n 2n n 2n

secme

317. To resolve x™—2xcos 0+ 1 indo Sactors.

If cos §=1 the expression becomes (z* —1)*, and if cos§=—1
it becomes (z*+1)'; in these cases the resolution into factors is
effected by what has already been given in Arts. 314 and 315, and
we will therefore suppose these cases excluded from what follows.
If we put

" _ 2" cos f+1=0,
we obtain 2*=cosf = ,/(—1)sind; hence z is an a® root of

co8 0 + ,/(— 1) &in 6; the n™ roots are found from the expression
2r1r +6

&, /(- 1)sin ———9 by ascnlbmg integral values to r,

for it is obvmus from De Mowre s Theorem that the n* power of
the last expression is cos(2rw + ) & \/(— 1)sin (277 + ), and if
be an integer this reduces to cos 6= ,/(—1)sinf. If we ascribe
to r in succession the values, 0, 1, 2,...n—1 in the expression

2""-O-h N(=1) sin 2" 8 we obtain 2n di iferent values for
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the expression. For if r=p and =g could give the same value
to the expression we should have

2 0
P"+ T w J(-1)si 2P”+a=cos2w+od=~/(—l)sin2q"+o;
n n —
now by Art. 93 we cannot have cos 2P7;+ 9=cos2q1r+0 and
n

.2 . - . .
sin p;; +9 =sin 29’::-9; it is also impossible that

and sin 2ﬂt@:—sin 2q1;_+0,

coﬂ2p1r+0=cos2q-:r+0
n n

to be a multi-

for that, by Art. 94, would require ——— 2p m+0 2q1;+ 4

ple of 2, so that § would be a multlple of ar, and this value of 0
hus been expressly excluded above. Thus we obtain 2n different
values of . Also the two factors

2r7r+0 2r +0 2r1r+0 2nr+0
~V(-Dsin =", 2 +y/(~1)sin
give by their product the real quadratic factor
2
(a:—eos2r.’;+0> +sin’2w;+o is, 2* — 22 cos r1r+0+l. '

/’.l‘hus ™~ 22" cos 0 + 1
= (x’— 2 cosz + l)(:c’— 2 cos 2”1:- 9+ l)(x'— 22 cos 4"HL0+ 1;)

{a,f'— 2a:cos'(2%-—21—+—9+ 1}{:1:'— 22 cosW+ 1} .

318. 'We shall now deduce some important results from the
preceding general theorem. Suppose £=1; then

- o )

2n1r-21r+0)
. (1-—008 amofrrYy.
n
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Let 6 =2n¢ and 2—1:‘ =a; extract the square root; thus
*gin ng=2"""sin ¢ sin (2a + ¢)sin (4a + ¢)......sin (2na — 2a + B).

. ‘We shall now prove that the upper sign must always be taken

on the left-hand side. First, suppose ¢ to lie between 0 and 2a ;
then every factor on the right-hand side is positive, and so is
sin n¢p. Next suppose ¢ to lie between % and 4a; then every
‘factor on the right-hand side is positive ewcept the last, and
sin n¢ is negative. Next suppose ¢ to lie between 4a and 6a,
then every factor on the right-hand side is positive except the last
two, and sin n¢ is positive. By proceeding in this way we see
that for every value of ¢ between 0 and 2na, the upper sign must
be taken, so that we have for all values of ¢ between 0 and =

sin n¢ = 2™ sin ¢ sin (2a + ¢) sin (4a + ¢)...... sin (2na — 2a + ).
‘We shall next shew that this formula is true for all values

of ¢; for suppose ¢=mmr+y where m is any integer, positive
or negative, and ¢ is between 0 and 7; then we know that

sin #y = 2* sin ¢ sin (2a + ¢) sin (4a + ¢)......sin (2na — 2a + ¢);

but sin ny =sin (n¢ ~ nmr) = sin n cos nmar = (— 1)™ sin nep,

sin  =sin (¢ — mm) =sin ¢ cos mm = (- 1) sin ¢,
8in (2a +y) =sin (2a+ p—mn)=sin(2a +$)cosmmr=(—1)"sin (2a+ ¢),

and so on.

Substitute these values of sinny, sin, sin(2a+y), ...... in
the formula which expresses sin ny in factors; then divide both
sides by (~1)™ and we obtain the required formula for sin ng,
whatever may be the valae of ¢.

In the expression for sin n¢ change ¢ into ¢ + a; then ne is
changed into n¢ +-’2’ ; hence

cosn¢=2"’sin(¢+a)sin(¢+3a)sin(¢+5a)...sin(2m—a+¢).
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In the last result put ¢ = 0; thus

1=2"""sinasin Jasin ba...... gin (2na —a),
ko
where a= 2;,

Again we have

s;iing'r%b=2"-!gin(2a+4;)ain(d:a+4>) ...... sin (2na —2a + ¢);

now let ¢ diminish without limit ; then since the limit of E:i%:
is n we obtain
n=2"""sin 2a sin 4a sin 6a...... sin (2na — 2a).

These two formulse are sometimes useful.

319. The expression for sinng in Art. 318 may be put into
a different form ; for
gin (2na — 2a + ¢) = sin (7 — 2a + ¢) =sin (2a — ¢),
sin (2na — 4a + ¢) =sin (v — 4a + ¢) =sin (4a - ¢),
and so on.
Then by multiplying together the second factor and the last, the
third and the last but one, and so on, we have
sin n¢p = 2"~'sin ¢ (sin’ 2a — sin® ) (sin*4a — sin’gp) ...
It will be necessary to examine separately the cases when » is
even and when » is odd.

First suppose n even; then the factor sin (na+ ¢), that is,
cos ¢, will occur without any factor to multiply it ; hence if #n be
even, we have

sin s = 2" 'ain ¢ cos ¢ (sin’ 2a — sin’ ) (sin” 4a —sin’ ¢)...
... {sin®*(n — 4) a — sin’® ¢} {sin® (n — 2) a —sin® ¢p}.
Next suppose n odd; then we have
sin ngp = 2" gin ¢ (sin® 2o — sin® ¢) (sin® 4a — sin® @) ...
... {sin® (n — 3) a —sin’ ¢} {sin’ (n — 1) @ —sin* ¢}.
Similarly from the formula
cosne = 2" sin (¢ +a) sin (¢ + 3a) sin (¢ + 5a) ... sin (2na — a + )
T. T, 17
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we obtain if n be even
cos ngp=2""" (sin’ @ — sin® @) (sin® 3a —sin’ ¢) ...
_ .. {sin* (n — 3) a — sin’ ¢} {sin’ (n — 1) @ — sin® ¢} ;
and if » be odd,
cos np = 2"""cos ¢ (sin’ @ — sin’ ¢) (sin’® 3a — sin® @) ...

... {sin* (n — 4) a — sin" ¢} {sin* (n — 2) a —sin® $}.

320. We can now resolve sin# and cos§ into their factors.
Suppose n¢ = 0 and that n is odd ; then by the preceding article

sin 6= 2" sin g(sin’ %0 — sin'g) (sin’ 4a—sin® f)
n n, n
divide both sides by sin %, and then diminish 6 indefinitely ; since
the limit of sin 6 +sin g is n we obtain

n = 2*"'sin® 2a sin® 4a...;

therefore by division,

sin® — sin® -
sino—-nsine 1- *n 1 ﬁ—n
n sin” 2a sin*4a /"

Now suppose n to increase without limit; then since a=21r_
n
. . 0
sin — sin — P)
the limit of o5 s the limit of —is o and 8o on;
thus finally,

sin=0(1-5) (1-gm) (1-30) -

We shall obtain the same result if we begin by supposing = even.
Similarly we may shew that

coso=(1-‘tr_‘i') (1-;,_5’:,) (1-‘_;‘2_3:,)....
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321. In the same way as 2" —2x"cos6+1 was decomposed
in Art. 317 we may decompose z** — 2z" a” cos § + a™, and each
quadratic factor of the last expression will be of the form

2 2moos2'r1r+0

+ a’, where 7 is an integer; and all the factors

are found by giving to 7 in succession the values 0, 1, 2, ... n— 1.

Andcos2(n—l)1r+0=cos21r—0, c082(7:,—2)‘»4- 0=cos47r_o,
n n n n
and so on; thus all the factors will be found if we take
2rr+6 )

2*— 2za cos + a°, and use both sig;ls and give to 7 in suc-

_Iifnbe odd, and up to.

cession the values 0, 1, 2, ... up to i 3

;—; if » be even; in the latter case when r=g’ we must take only

nr+0

one factor x*— 2za cos +a

2 z
Now suppose a:=l+%,and a=l—%,thus

(1+_) _2( )c080+(1—~—)

is the expression to be decomposed into factors; and the general
form of the factors is

z\’ 2 2rm =6 z\*
(1+ﬂ) —2(1—21?)008 p +(l—%>,

. 2 2\ . 2rr=0
. that is, 4 sin® 2”'*0 (1 cot? 2’;’:”)

Suppose 7 to increase indefinitely; then

z\* , z\" _
1+4) =6, 1_2_") =e™, (dlgebra, Art. 552),
17—2
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) 2! t’2m*0—- 2
aiso & T T @0y’

and by putting 2= 0 we obtain
Brad, s

i = 4 5in® 0 4 eine?

2 2n gn A g
thus finally

- . .0 2 2* P
¢—2cosf 46 =4 sin 5{“6"}{1*(27*0)'}{“(4”*0)'}“"

Other examples of a similar kind may be seen in the sixth
chapter of the third volume of the treatise on the Differential and
Integral Calculus by Lacroix.

322. De Moivre's property of the Circle. Let O be the centre
of a circle, P any point within it or without it ; divide the whole

circumference into 7 equal arcs BC, CD, DE, ..., beginning at
any point B, and join O and P with the points of division
B, C, D, ... Let POB=0; then will

OP™— 20P". 0B"cosnf + 0B™ = PB*. PC*. PD’... to n factors.
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For PB'=0P'-20P.0Bcosf+ 05,

PC* = OP*—20P. 0C cos (o + -2;:-') +0C*,

PD*= OP*—20P. 0D cos (o N 4—1:') +OD",

..............................

and the radii 0B, OC, OD are all equal.

Thus, by Arts. 317 and 321, the product of all the terms on

the right-hand side of these equations is
OP*™ —20P".0B"cos nf + OB™;

this proves the proposition.

The particular case when P is on the circumference may be
noticed ; then

nd

208" sin 3= PB.PC.PD... to n factors.

Cotes’s properties of the Circle. These are particular cases of
De Moivre’s property of the circle.

Let OP produced if necessary meet the circle in 4, and sup-
pose AB=BC = 2%-; then nf=27. Thus we obtain
(OP* - 0B")'=PB'. PC". PD* ... to n factors;
therefore OP"~0B*=PB. PC.PD ... to n factors. -
Again, let the arcs AB, BC, ... be bisected in @, b, ... ; then
by the theorem just proved,
OP"~ OB™=Pa.PB.Pb.P(C... to 2n factors;
therefore by division, ’

oP + 0B"=fa.Pb . Pec ... to n factors.

323. It is usual in works on Trigonometry to give a brief
though unsatisfactory demonstration of the results of Article 320
in the following manner.

Since sin 4 vanishes when =0, or =, or & 2m, ... it follows
that sin @ must be divisible by 6, 0 +m, 6 —m, 0+ 2m, 0 —2m,...;
therefore we may assume that
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sin =46 (0 — =) (6 + ) (0 — 27) (6 + 27) (6 — 37) (0 + 3)...
where A 1is some quantity independent of 6; thus we may

suppose
sinf = a0 '>(1 )(1 o )

where a is also some qua.ntlty independent of 6. Divide both
sides by 6 and then suppose 6 =0 ; thus @ = 1, and consequently

in0-0(1-2) () () -

Again, since cos § vanishes when 6= =l=§, or d:%r y eee 1t
foloos that oos0 must be diviitle by 0-3, 0+, 6-°T,
6+ ?; y o therefore we may assume that

exs-a(0-9(0+3) (-0

where A is some quantily independent of 6; thus we may

suppose
cosd:a(l—%f:)(l o ) (1 e )

where a is also some quantity independent of 6 ; and by putting
0=0 we find a=1; thus

c0s 0= (1 - f‘i') (1-52) (1= 32

The portions of the preceding investigations which are printed -
in italics involve assumptions which cannot be considered legitimate.

324. It has been stated in Art. 169, that the tables of the
logarithms of Trigonometrical functions can be calculated without
the use of the tables of the Natural functions ; we will here briefly
indicate how this may be effected. 'We have

sin0=0(1 _%',) (1 -5‘;) (x _52;_,)...;
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m .
put — 5 for 6 and take logarithms ; thus

log sin

T m T m?
—2-=log ;+ log§+ log(l—l—ri’)

m’ mt
+10g (1 - ?4?> + log (1 - m,) + ...
The terms in the last line may be expanded by Art. 145 in
series which will converge with sufficient rapidity ; thus we shall
have if x denote the modulus

log sin '—3 12r=logar+logm+log (2n+m)+1og (2n—m)—3(log2+logn)

_K l+_1_+l m*
9 (4‘ & §‘ + ....)7?
_fi(l+1 N )"L’
3\ 6T )

Similarly we may find log cos-:{: g. (Airy’s T'rigonometry.)

325. We will now make a few remarks on the symbol ,/(-1),
which has been used very often throughout the latter portion of
this book. We may consider that the symbol has been used in an
experimental manner, and many results have been obtained by
means of it; the point now to be considered is how far these
results can be received as true.

In the first place, some of the results obtained by using the
symbol ,/(-1) may be shewn to be true by other methods ; thus,
for example, the values obtained for sin nf and cosnf in Art. 269
may be verified by snduction.

Again, the following example will shew how in some cases
a strict demonstration may be obtained even with the use of
the symbol ,/(~1). Let n be a positive integer, and suppose it
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required to expand cos® @ in terms of cosines of multiples of 6 ;
we may proceed as we did in Art. 280, supposing z to stand
for ¢®V(-), Now we know that

(@ +e¥) =€+ ™ +n{e" W+ "W 2(17'_-21) {6" eIy
’ 1 :'/G L]
thus 2 { l 2 E PR }
14+ n'y nyt n
[E R TS T

{ L= (=2 (n-2% )
1.2 4 I}

Now this is true for- all values of y, that is, if all the opera-
tions indicated be performed, the two members of the equation
are tdentically equal. 'We may therefore put — 6* instead of 3%,
and the result will still be true. Thus

¢ S e
{113+ 3 [£~ J- St
(=20 (n—2%
*"{1‘ e " @ "
BRI

Thus 2°™' cos™ 6 = cos nf + n cos (n—2) O+ ......
(Airy’s Trigonometry.)

Finally, the student may be informed that a theory has been
constructed which offers a complete explanation of the symbol
/(= 1), and thus enables us to obtain rigid demonstrations by the
wse of this symbol. It is not consistent with the plan of the
present work to give any account of this theory; the student,
however, is recommended hereafter to read the T'rigonometry and
Double Algebra of Professor De Morgan.
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EXAMPLES.

1. ‘ Find the sums of the following infinite series :

1 1
(1) 1,,+ + = +4.+

when 7 =2 and when n=4.

2. If a= —, shew that
4n

sin asin Sasin9a ...... sin (4n— 3)a=2""*4,

3. A polygon of n sides inscribed in a circle is such that its
sides subtend angles a, 2a, 3q, ... na at the centre; shew that the
ratio of the area of this polygon to the area of the regular

inscribed polygon of n sides is equal to that of sin 7%1 to » sin % .

4. The product of all the lines that can be drawn from one
of the angles of a regular polygon of = sides inscribed in a circle
whose radius is a to all the other angular points is na™~"

5. If p, Py P4 yr P, be the perpendiculars drawn from
any point in the circumference of a circle of radius @ on the sides
of a regular circumscribing polygon of 2n sides, shew that

Py D3 Ps+ Ponrt PPy P = Pk

6. A polygon is described about a circle touching it at the
angular points of an inscribed polygon ; the product of the perpen-
diculars drawn to the several sides of the. inscribed polygon from
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any point in the circumference of the circle is equal to the pro-
duct of the perpendiculars drawn from the same point to the
several sides of the circumscribed polygon.

. 0 .6 . -0, ,7+0
7. Pr?ve that smocos§=8s1n§sm — s ——.
8. Prove that
0 0 6 6 0 0 20
g 2 v _ 2V CR 2V 2=,
(cosec g—sec 3 ta.n3_(tan 2cosec 6 sec 2)cot 3

9. Prove that
tan 30 — tan 20 — tan 0 = tan 36 tan 20 tan 6.

10. Find « from the equation

tan® z + cot’ € =m® — 3m.

11. The circumference of a circle is divided into 27 equal
parts in the points 4, P, @,.... Tangents are drawn at the points
4, P, @, ... and perpendiculars 04, OB, OC, ... are let fall upon
them from O the extremity of the diameter O4. Shew that

04*+ 0B* + OC* + ...... = 3n (radius)". 1

12. ACB is a quadrant; AP, 4Q, AR are three arcs in
ascending order of magnitude, each being less than 4B, and
their sum equal to twice 4B ; radii CP, CQ, CR are produced
to meet the tangent at 4 in p, ¢, 7, and a triangle is formed
with dp, Ag, Ar. Find the condition that this may be possible,
and the inferior limit of 4¢ and the superior limit of 4p. Prove
also that in all such triangles the radii of the inscribed and
circumscribed circles are inversely proportional.

13. ABC is a right-angled triangle, C' being the right angle,
E is the point in which the inscribed circle touches BC, and F the
point in which the circle drawn to touch AB and the sides C4, CB
produced meets C4; shew that if ZF be joined the triangle FEC
is half the triangle 4 BC.
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14. Through the angular points of a triangle lines are drawn
bisecting the exterior angles. If § be the area of the original tri-
angle and §’ that of the new triangle, shew that

1, 4 B c
S’=§Scosec§cosec2— cosec 7.

15. ABCD is a horizontal straight line., From a point imme-

diately above D the known distances 4B and BC are observed to

subtend the same angle a. If 4B=a and BC'=b, shew that the
height of the observer’s position above D is

2ab(a+b)tana
(@a—b)+(a+b)tan’a

16. If in any arc not greater than a quadrant a point be
taken, and from this point two lines be drawn, one to the ex-
tremity of the arc, the other perpendicular to its chord and
terminated by it, prove that the sum of these two lines is less
than the chord of the are.

17. Suppose a the angle of elevation of a cloud, B the angle
of depression of the image of the cloud seen by reflection from
a lake, & the height of the observer’s eye above the lake, then
the height of the cloud is

hsin (B + a)
gin (B—a) *

18. At noon a person standing on a cliff & feet above the
level of the sea, observes the altitude of a cloud in the plane
of the meridian to be a and the angle of depression of its shadow
on the surface of the water to be 8; shew that, if y be the sun’s
altitude at the time of observation, the he1ght of the cloud above
the surface of the water will be : '

ksinysin(a-{-ﬁ)
sin Bsin(y+a) ’
the sun being behind the observer when he is looking at the
cloud,
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ANSWERS.
1. II. IIL 1IV. V.
L page 6. 1. 18 27°. 2. 159 45°, 3. 30°, 15°
, . 50n® 27n0 o
4. 00945, 5. S, S 6. 2. 7. 3°.

8.  One polygon has 8 sides, and the other 12 sides; so that an
angle of the first is § of a right angle, and an angle of the second
§ of a right angle. 10. The ratio is that of 5 to 162.
T, 3180
IL. pages 13, 14. 2. 05
b5

5. 33 28125, 31525, 6. 40° 60° 80° 7. 30°% 60° 90°.

3. wx-00505. 4. 27°,9°, 18°.

IIL pages22,23. 6. o=§. _T.6=0or

™
2‘. . 6 2.
9. =1;. 10.0:%'01-%’. 11. 4 =45°; B=15"

IV. page 41. 1. The same as for an angle of 225°.
2. The same as for an angle of 330°. 3. The same as for an
angle of 210° 4. The same as for an angle of 300°.
. 45°% 225 405°, 585°, 765°.
. 45°, 135°, 225°, 315°, 405°, 495°, 585°, 675°, 765°, 855°.
1 /3 1 3
8 3

5
6
1 1
7- O, l_ﬁ, 1, 1+—JTz, 2.
9
0

. §» ‘_2' ’ "2) .
. 'We have sin § =—cos §; therefore 6 = 135°, &c.
10. cos§=—4; therefore 6 =120° &ec. 14. No.
V. page 49, 1. mr+‘;—r. 2. Cn+PHm 3. 2nm.
4. 27&#*%?—-. 5. nr+a 6. mr-k%r. 7. nr+a.

8 mrel. 9. nrsa 10. nrag. 12 i+ T

6
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VI.'pageﬁl. 31. 0=n1r=l=;—;. 32.52—0=n —2—=(n+,})1r

33. 36=nmor 46 =2nw 3. 34, 6-T=2nmu 7.
35. f=nmornmar. 36. 20=(n+ P or 0= 2nw 2T ,
37. 20=nmror 0= 2mr=1=25—1r 38. 29=n-n-+(—1)"%-
39. O=(m+fmor4h=nw+ (-1 %. 40. g+ 7=nm3.

VII. pages 68—T70. 2.2 cps%:,\/(l +sin 4) -, /(1-sin 4).

3. 2sin—:‘; =— /(1 +sin 4)— /(1 —sin 4).

3r 5= 5x Tr
2 — . . — —.
4. 2nw+ 7 and 2nw + i 5. 2nw + 1 and 2nr + y
P x 1 ~/3 1
6. 2nmw i and 2mr+4= . 10. 3 11. - 3 .
12. sind= *%, cosA::hgg orsind = s:g, cos A= a:%
13. /3-2. 26. =1. 27. 4. = 28 -}

VIIL pages 77—79. Example 20 may be deduced from ex-
ample 16 by changing 4 into } (v — 4) and making similar
changes for B and C'; example 21 may be deduced from ex-
ample 17 in the same way.

cosz—cosa sin"acosf
cosz—cos B sin’ Bcosa’

sin* B cos'a—sin*acos’ B cosa+cos B |

therefore cosx= -; - =
sin® Bcosa—sin*acosB 1 +cosacosf’

1—-cosz tan*d tan*a .
then find .-TOSE . 39. t;fo, = m 5 that 18,
cosB—cosa _ cos ﬁL—ﬁcos_ o _ tan® a therefore

cosa cosd | wnd’
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cos B —cosa_sin*acosa’ _sin'a’cos’ a —sina cos® o
cosB—cosa’ sin’a’ cosa’ cos = sin®a’ cos a —sin® a cos o’
_ cos® a — cos® o’ " cosa+cosa
“ T cosa—cosd —cosacos’a +cosa’cos’a 1+cosacosa ’
then ﬁndl—cosﬂ. 48. Pu tm—é—‘i for tan ¢ ; then
1+cosfB l1-tan®{¢ ’

solve the quadratic; thus we shall find
_ (cos86+sin @) = (1 +sin ¢ cos 6) _
tandé=— .8in 6 cos & ’
the lower sign gives the required result. The upper sign gives

6
'—cot2cot 4 02>

52. By Example 23, page 77, we get cos 4 cos Bcos C=0, so
that one of the three angles is a right angle.

IX. pages 90, 91.
_ (n—1)tan¢ _ n-1
5. tan(6-d) = T s ~ [V tan ) = oot G+ 2 Jn’
the greatest value of this is when the first term of the de-

nominator vanishes. 6. 2sin 0 sin® 0+¢

, 1760x
8. The height in yards=1760 x tan1"= 18060 nearly.
9. Let « be the distanc 3 lo thus nearl
. Le istance, - =tan . ; 180 i y.
10. We get sinA:*%,J(l%—-n). 12. 6. 16. 8.
17, 6-T=2m 18 o+g=2m*%”. 19.7 - 26=2nm6.
3 T 30
20. O=nr+ Tor 20=mnmr+ (- 1)”§. 21 5 =nm or
%—%-271#:&?2—0 22, 0=mr+%:£ or sin20=2(,J2—1).

2. 0=(2m+1)F ornmay. 24. 6=(2n+1)7.
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3
25. 0= mral-loormrilg. 26.%=mror2mr-k%.
27. o="_g'. 28. G=mw= 7 or nwsz. 29. G=nwx>

30. 0=n7rormr+il. 31. sin%0=0,orc080=0,orc g=0

32. cos-+sin 30 =0, that is, cos 6= cos (30 + ’2’) .

. . 0 6
33. 20= ""*ﬁ 34. sm0=—-l,or81n§=0,0rtan§=2.

35. 20=(2n+ 1)’2-', or 70 =nr+ (- 1),%

It should be remarked that answers may be given under
apparently different forms; thus, for example, suppose we have to
solve the equation sin 26 = cos 6, or 2 sin 6 cos 6 = cos 6,

but we may write the equation cos (g - 20) =cos 0 ;

therefore 725 —20=2nr =0,
21 34
X. pages 100—104 1 5. 2. 243Y9=(J/3)'. 3. 7;—4;—}.
1 1 1 1

4. 106, 6. 3; -1 0. - E

12. 2a:—a=2n1r=i=g. 18. z=acos(a — ) or —a cos (a + ).
14, Torgnra T, 15 cos(e+ Da=cos(5-3)-
16. z:sec(a—§>‘or—2oos%seca. 17. We can get

- 0
gin 2% o =sin 3a. 18. sin = -5 = (m) sing ; this gives tan 3
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19. @=mmr+5or (n—1)0=2mr*%r.

2
. 0 56 T
20. cosO:O,orsmE:O,or:oosa—O. 22. 16°
23. n=2 24. sin"’;“sinﬁ;—%o.

31. Write for 2 successively = z— and 3+

34, By Art. 114, tan® 4 + tan® B + tan* C =1 +  (tan 4 — tan B)*
+ 4 (tan B — tan C)° + § (tan C — tan 4)*.
36. cot B+ cot C — cosec 4
sn_n(B“+_C')_ 1 _sin’4d —sin Bsin 0 &o
“sinBsinC sind sndsnoBsinC ’
37. If A + B+ C=180° we have
cos® 4 +cos* B+cos* C=1-2cos 4 cos BeosC............ (1).
Thus, if 4, B, C are all acute, the sum of the squares of the
cosines is less than unity. Hence if we require the sum of the
squares of the cosines to be egqual to unity, one or more of the
acute angles must be diminished, so that their sum will then be
less than 180°.
38. From the value of sin (4 + B + C), given in Art. 113, it
will follow that
sin 4 + sin B +sin C —sin (4 + B + C)
=sin 4(1—-cos B cos C) +sin B (1—cos 4 cos C)+sin C (1 -cos 4 cos B)
+8in 4 sin BsinC ;

and every term of this expression is positive.
a3

39. e7. 40. zero.  41. It depends on (1—cos8)*(1 + 2 cos 6)
being greater than zero.

—sina=sin 8

XIL 141—145. . =
pages 145 , 3. tan d o5 a 605 B
. 1
‘4.1,%. 5. COtE—OOto_sin(f'
c—1 e
6- \ °c-;*1. 7..a,:b’. 8 a +b!+""§a 1.
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11 a'+b-2=2. 12. a:'+y'=a’(1+%:)_
13. c0t6=¢1z—}b" 14. £+%=1 15. 8*=a’—2ac cos2¢ + "
19. (mn)}{mi+nd}=1. 20. ‘2’: .’i! L
29. sinfsingd=gnacinp,
2 0 0 _sinasin’B
therefore 4 sin® 5~ 4 sin’ § = ¢ ,
. .0 . .0 sin’a sin®8
therefore 4 sin* §—4sm'§ +1=1- sin¢ ’
oot’%
and sin’¢ = ; therefore

cot’ + cos }3

sm——l *\/l 4sin's mt’-+003’/3)81n’.3)

this reduces to 2 sin’gf—l == (l —2sin’§ sin'ﬁ) .

30. = must lie between —2 and — 1 or between 1 and 2.

31. By Art. 114 we may suppose x=tan 4, y =tan B, z=tan C,
where A+ B+ (C=180° Therefore 24+ 28 +2C=360°;
and tan 24 + tan 2B + tan 2C = tan 24 tan 2B tan 2C.
This gives the required result.

32. vsine=sinz=—sinzcosy— coszsiny

—vsinacosy—vsinbdcosz, or sina cosy=—sinc—sinbcosx;
and sin asin y=sgin bsin z; square and add, thus
sin'@ =sin'b +sin®c + 2 sin bsin ¢ cos ; therefore
sin’a —sin® b —sin®c
2sinbsine
Similarly cos y and cosz may be found.

al

33. ¢ ‘#,

COS T =

TT . . . 18
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37. Wae have universally
sin® (4 + B) =sin®4 + sin®B + 2sin 4 sin B cos (4 + B)...... 1);
also in the present case sin’4 +sin’B =cos*C......(2).
If A + B is greater than 90° then a fortiori 4 + B +C is so also.

If A + B is less than 90°, then sin® (4 + B) is greater than
sin®d +sin’ B by (1), that is, greater than cos*C by (2);
therefore 4 + B is greater than 90°—C.

XTIIL pages 152—155.

5. Let ]‘% = a 50 that the angles of the triangle are 2a, 4a and 8a.

Then the ratio of the greatest side to the perimeter
_ sin 8a _ sin 8a
" 8in 2a+sin4a +sin8a  sin 2a +sin 4a + sin 6a

_ 2 sin 4a cos 4a _ sin 4a
~9gin 3acosa + 2s8in 3a cos 3a o8 & + CO8 3a

2 sin 2a cos 2a

~ 2 cos2acosa =2sina.
sin 20 +sin 4 a+c a+c
8 —m3 - b’ therefore 20030—-—b .
21. sin@+sin ¢ =2sin (0 + ¢); therefore coso_2¢=2cos——f—¢;
0 ¢ 0. ¢,
therefore cosgcosﬁ-:?xsm 2sm§ ;
therefore (l sin’ - (l—sm’ ¢> 9sin® sm’q—s
0. b b .¢
therefore 8 sin* 3 sin® 5= 1 —sin® —2-—sm
therefore 16 sin® 3 sm’?—2—2sin’% ’¢—0030+cos¢.
a'+b -2 a+c
Or thus, coso=~T¢b—— and b=—2—

{




40.

o = oo oW

12.

13.
14.
17.
19.
21.
24,

25.

26.
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—¢c b ba-3e
+o—= ;

a
therefore cosf = % o’

similarly cos¢ =

This will follow from examples 20 and 21 of Chapter viiL

‘We have to shew that (b+c—a)(c+a—b)(a+b—c) is less
than abc except when a=b=c. By squaring, this amounts
to shewing that {a* — (¢ — 8)"} {d* — (a —c)*}{c* — (a —b)"} is less
than a*6%"; and each factor on the left-hand side is less than
the corresponding factor on the right side except when a=b=c.

XIV. pages166—169. 1. A=30°or150°. - 2. 30° 90"

45°, 60°, 75°. 4. The triangle is impossible.
B=90% C =72 c=4,/(5+2,/5. 6. B=45%or 135"
From Art. 235 we have ¢ + ¢ =2b cos 4 and cc'= b* — a.
b*sin 4 cos 4. 11. No; the triangle is right angled.
We get sin 6 = 2———"/c(g‘b)sin% C;
a+b _sind +sinB _cos}(4-B)

¢  sinC =~ singC
¢ =a'+b*—2abcos C=(a—0b)" +4absin’} C; &e.
9-6733937. 15. 132° 34’ 32" 16. 55° 46’ 16",
78° 27 47", 18. 119° 26’ 51”; 5° 38'9".
69° 10’ 10”; 46° 37" 50”. 20. 116° 33’ 54”; 26° 33 54”.
82° 10’ 50”; 50° 24’ 10”. 22. 124° 48’ 59';‘: 3511’ 1”.
48°11’ 237; 58" 24’ 43"; 73° 23’ 54"

3 A 3475
G953 ‘therefore sin’ 5 =arg;

70° 53’ 36”; 49° 6" 24", 27. 38° 127 477; 21° 47" 13"
26°33' 54”. 29. 69°49'35”; 50°10°25”.  30. 30°or15°.

also

cosd = B=1"29".

—
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XV. pages 175—181. In order to solve some of these ex-
amples the student must be acquainted with the Mariner’s Com-
pass. In the Mariner’s Compass the circumference of a circle is
divided into thirty-two equal parts, so that each part subtends at

the centre of the circle an anglé of i%o degrees, that is, an

angle of 111° The following names are assigned to the points of
division of the circumference, North, North by East, North
North East, North East by North, North East, North East by
East, East North East, East by North, East, East by South, East
South East, South East by East, South East, South East by South,
South South East, South by East, South, South by West, South
South West, South West by South, South West, South West by
West, West South West, West by South, West, West by North,
West North West, North West by West, North West, North
West by North, North North West, North by West.

1. 880(3+,/3). 2. %) yards. 8. The distance of the
eye from the foot of the tower =b 'H:—:f’—" )é. 10. Let

x denote the required height; then eliminate 6 between
z=>btan6, a+x=>tan (0 +7).
11. 10 ,/(115) feet ; neglecting the height of the observer’s eye
from the ground. 12. 40 ,/3 feet.
13. Height 40 ,/6 feet; *distance 40 {,/(14) + ,/2} feet.
18. 8+ 4 ,/2 miles per hour.
22. Let A be the height of the higher hill, 2 of the lower; then
=(c+ 1) sinasin 8 and Ez K cotad —c.
sin(B—a) ’ h ™ hcotB+1"
23. 180 ,/3 feet. 25. B=60° or 120°; approximate error 6”.
26 2c¢ sin a sin Bsin (u + B)
" sin*a+sin’*B — 2sin a sin B cos (a + B)°
29. J(a®+2ab cosa +b°). 30. Suppose both lines OC
and O'C to fall within the angle ACB. Let AC=a, ACO=¢;
then from the triangles ACO and BCO we get
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OC___asin (p+a) acos(d—p)
sina ~  sinf °
Hence tan ¢ is known and then sin ¢ and cos¢. Thus we
2 $

hall . a’ cos’ (a + )
shall get  OC' sin’e +sin*B — 2sin asin B 8in (a + B)°
A similar expression can be found for 0'C*® in terms of o
and B. Then O'C°=0C*+d". This finds  and then 4 B=a,/2.

. _tana(l —-tang)
Or thus; find asabove tan = tan B ([ —tana)’
tana’ (1 — tan f)
tan 8 (1 —tan ')’
Then oocr=’§'_ ¢—¢ and OC=d cot 0CO = dtan (¢ + ¢).

Thus OC is found ; and then a can be determined.
31. 10493 feet. 32. 63° 26’ 6", 33. 30° 40" 37",
34. 296-40031 feet.

Similarly tan BCO' =

XVI. pages 192—199. 1. 216. 2. %‘—9 .
3. 6. 8 T7to3;120° 25. \/(pq); where p and g are
the given segments. 46. 82° 24’ 39”; 22° 24’ 39”;

75° 10" 42", 50. Conversely, if this relation holds it may
be shewn that the lines meet in a point.
51, 52, 53, 54 follow from the converse of 50.

XVIL pages 203—205. 1. -1, ,/3-4,-,/3-4.
4. -2, 2,/2c089° 2,/2c0863° 2,/2cos81° 2,/2co8153".
7. Let « be the height of the balloon, and a, b, ¢ the sides of
the triangle A BC; then 4c'z*—36a’b"c® + 9a’b’c* = 0.
9. Less than 2 inches. 12. Suppose A the height of the
tower, r the radius, « the distance of the first place of
B z-a

observation from the centre; then §=cosec§, ~

= cosec g, h=ztane, h=(x—a)tana. From these four

equations we may eliminate z, and find % and 7, and also the
required relation between q, o, 8, 8. 13. From the pre-

———
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ceding question ;=cosecg —cosecg—’. If we suppose that

an error & of the same sign'is made in B and B’ these errors

tend to compensate each other; the greatest possible error in

r will be determined by supposing that errors of opposite J

signs are made in 8 and §’. Suppose then that instead of

B we ought to have 8 —8, and instead of 8 we ought to have '

B +8. Then by Art. 194 we shall find

cosg . cos g) (cos + cos —) (1 —cosh 5 Co8 )

2 !B iﬁ

sin —SlIl —-

ity
kel

B sp'

8'111— sin’ =

Divide by the value ofg- and the required result is obtained.

. 14. If PQ=a and QR =, it may be shewn that
1 _(a=b)° (a+d), .
5¢~ dat t daw WR

then the change in SQ arising from a small change in 8 can

be calculated. !
2 ;
XVIII pages 207—210. 2. 1. 7. 2057 18. z’=—1-7(5—2J2).
a+b

19. =1 20. z=0or=4. 21. z=0or=}.

22. w=—%‘l. . 23, z==1or=(1=,/2).

24 z=agora’-a+l. 28. z=2. 30. z=1,y=2;
z=2, y="T. '

34, nmw+(- l)"""%, or(m+n)m+(— 1)'%
35. (n+m)Te3.
XXTII. pages 246—249. y

1. TUsesin’a=}(l —cos2a). 2. Usesin’a=1(3sina—sin3a). 7§

5 = 008 (26 + na) sin e 9. }(cos 26— cos 2**'6).

=cosa+
2 2sina
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10. o080 cos (6 + cos @ sin §). 12.  } (etin + ¢75in6) cog (cosb).
cos 0 . (sin 20
13 [ log (1—cosf). 14, en0sin <s“; ) :
15. sin 0 — cos 6 + etin@ 00 cog (§ + sin® §).
20. 2*sin 2_“{, isin%. 21. tano-tanzf,
1 2-—1

Tan}0 sl Tg" 23.  cosecO {cot 0 — cot(n + 1)6}.

24, cosec (0 + 72r) {tan (n+1) (0 + 72—r> —tan (0 + g)}

25. T _tan™ 1 26. tan'nzx. 27. l<coos
4 n+l’

28. % cosec 6 {tan (n+ 1) § —tan 6}.
29. 1cossecg{secgndl.l)0~s 0} 30. 1{coi;?——3“cot ?ﬁf

Z=a —C08 4a) .

1°9% 3 °3 1
31. cot"‘%—cot"n—;ia. 32. cos 0 —sin 0 cot 276.
33. log2sin2g— 082N 20

2“
XXIII. pages 265—267. 1. When % =2 the sum of the first

2
series is E , and the sum of the second series is % When n=4

the sum of the first series is %, and the sum of the second series

4

is gg. These results are obtained by expanding the values of

og F—H;—o and log cosf, which are given in Arts. 274 and 320, in

powers of 0, and equating the coefficients of like powers.
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